Вплив зсуву магнітного поля на дрейфову нестійкість E × B у плазмі

Автор(и)

  • S. Nasrin Department of Physics, Jadavpur University
  • S. Das Department of Mathematics, Prince Georges Community College
  • M. Bose Department of Physics, Jadavpur University

DOI:

https://doi.org/10.15407/ujpe68.7.448

Ключові слова:

магнiтний зсув, дрейфова нестiйкiсть, частота зiткнень, градiєнт густини

Анотація

Дослiджено вплив магнiтного зсуву на хвилi iонного дрейфу в плазмi iз градiєнтом густини i геометрiєю плоскої пластини. Отримано диференцiйне рiвняння для опису структури моди вздовж градiєнта густини. Магнiтний зсув локалiзує моду поблизу поверхнi, яка є нормальною до магнiтного поля. Магнiтний зсув стабiлiзує моди з великими довжинами хвиль (kρi < 1), але дестабiлiзує моди при наближеннi до короткохвильової областi, де градiєнт густини дестабiлiзуючим чином впливає на моду, що залежить вiд магнiтного зсуву i визначає резистивний дрейф. Однак ефект вiд частоти зiткнень є несуттєвим. Сумiсна дiя магнiтного зсуву i потокiв E×B посилює конфайнмент у вузькiй радiальнiй областi з внутрiшнiм бар’єром для транспорту, де досягається стабiльнiсть.

Посилання

N.A. Krall, A. Simon, W.B. Thomson. Advances in Plasma Physics (New York, 1968).

C.I. Weng, C.S. Ma. Linear theory of the E × B instability. Chinese J. Phys. 13 (1), 44 (1975).

H. Romero, G. Ganguli, Y.C. Lee, P.J. Palmadesso. Electron-ion hybrid instabilities driven by velocity shear in a magnetized plasma. Phys. Fluids B: Plasma Phys. 4 (7), 1708 (1992).

https://doi.org/10.1063/1.860028

R.J. Groebner, K.H. Burrell, R.P. Seraydarian. Role of edge electric field and poloidal rotation in the L-H transition. Phys. Rev. Lett. 64 (25), 3015 (1990).

https://doi.org/10.1103/PhysRevLett.64.3015

G. Ganguli, Y.C. Lee, P.J. Palmadesso. Kinetic theory for electrostatic waves due to transverse velocity shears. The Physics of Fluids 31 (4), 823 (1988).

https://doi.org/10.1063/1.866818

S. Sen, M.G. Rusbridge, R.J. Hastie. Collisionless drift waves in the H mode edge (plasma). Nuclear Fusion 34 (1), 87 (1994).

https://doi.org/10.1088/0029-5515/34/1/I06

C.R. De Vore. Current-driven resistive drift instabilities in sheared magnetic fields. Nuclear Fusion 21 (1), 105 (1981).

https://doi.org/10.1088/0029-5515/21/1/011

L. Chen, P.N. Guzdar, J.Y. Hsu, P.K. Kaw, C. Oberman, R. White. Theory of dissipative drift instabilities in sheared magnetic fields. Nuclear Fusion 19 (3), 373 (1979).

https://doi.org/10.1088/0029-5515/19/3/009

W. Horton. Drift waves and transport. Rev. Mode. Phys. 71 (3), 735 (1999).

https://doi.org/10.1103/RevModPhys.71.735

J.D. Huba, S.L. Ossakow, P. Satyanarayana, P.N. Guzdar. Linear theory of the E × B instability with an inhomogeneous electric field. JGR: Space Physics 88 (A1), 425 (1983).

https://doi.org/10.1029/JA088iA01p00425

M.A. Pedrosa et al. Sheared flows and turbulence in fusion plasmas. Plasma Phys. Controll. Fusion 49 (12B), B303 (2007).

https://doi.org/10.1088/0741-3335/49/12B/S28

V. Rozhansky, E. Kaveeva, S. Voskoboynikov, D. Coster, X. Bonnin, R. Schneider. Modelling of electric fields in tokamak edge plasma and LH transition. Nuclear Fusion 42 (9), 309 (2002).

https://doi.org/10.1088/0029-5515/42/9/309

V.N. Rai, F.Y. Yueh, J.P. Singh. Laser-induced breakdown spectroscopy of liquid samples. Laser Induced Breakdown Spectroscopy (Elsevier Amsterdam, 2007) [ISBN: 9780080551012].

M. Greenwald. Density limits in toroidal plasmas. Plasma Phys. Controll. Fusion 44 (8), R27 (2002).

https://doi.org/10.1088/0741-3335/44/8/201

B.A. Carreras, L. Garcia, M.A. Pedrosa, C. Hidalgo. Critical transition for the edge shear layer formation: Comparison of model and experiment. Phys. Plasmas 13 (12), 122509 (2006).

https://doi.org/10.1063/1.2405344

M.A. Pedrosa et al. Threshold for sheared flow and turbulence development in the TJ-II stellarator. Plasma Phys. Controll. Fusion 47 (6), 777 (2005).

https://doi.org/10.1088/0741-3335/47/6/004

R. Bharuthram, M.A. Hellberg, R.D. Lee. The cross field current-driven ion-acoustic instability in a collisional plasma. Theor. Nucl. Phys. 28 (3), 385 (1982).

https://doi.org/10.1017/S0022377800000374

M. Gregoire, P. Rolland. Shear stabilization of drift dissipative instabilities. Nuclear Fusion 13 (6), 867 (1973).

https://doi.org/10.1088/0029-5515/13/6/011

C.L. Chang, J.F. Drake, N.T. Gladd, C.S. Liu. Unstable dissipative drift modes in a sheared magnetic field. The Physics of Fluids 23 (10), 1998 (1980).

https://doi.org/10.1063/1.862876

J. Boedo et al. Enhanced particle confinement and turbulence reduction due to E × B shear in the TEXTOR tokamak. Nuclear Fusion 40 (7), 1397 (2000).

https://doi.org/10.1088/0029-5515/40/7/309

S. Khrapak, V. Yaroshenko. Ion drift instability in a strongly coupled collisional complex plasma. Plasma Phys. Controll. Fusion 62 (10), 105006 (2020).

https://doi.org/10.1088/1361-6587/aba7f8

R.J. Taylor et al. H-mode behavior induced by cross-field currents in a tokamak. Phys. Rev. Lett. 63 (21), 2365 (1989).

https://doi.org/10.1103/PhysRevLett.63.2365

Y. Zhang, S.I. Krasheninnikov, A.I. Smolyakov. Different responses of the Rayleigh-Taylor type and resistive drift wave instabilities to the velocity shear. Physics of Plasmas 27 (2), 020701 (2020).

https://doi.org/10.1063/1.5130409

P.J. Catto et al. Parallel velocity shear instabilities in an inhomogeneous plasma with a sheared magnetic field. The Physics of Fluids 16 (10), 1719 (1973).

https://doi.org/10.1063/1.1694200

R. Singh, R. Singh, H. Jhang, P.H. Diamond. Momentum transport in the vicinity of qmin in reverse shear tokamaks due to ion temperature gradient turbulence. Phys. Plasmas 21 (1), 012302 (2014).

https://doi.org/10.1063/1.4861625

S. Ku et al. Physics of intrinsic rotation in flux-driven ITG turbulence. Nuclear Fusion 52 (6), 063013 (2012).

https://doi.org/10.1088/0029-5515/52/6/063013

R.L. Tanna et al. Overview of operation and experiments in the ADITYA-U tokamak. Nuclear Fusion 59 (11), 112006 (2019).

T. Ohkawa, R.L. Miller. Creation of localized sheared flow by ion trapping. Phys. Plasmas 12 (9), 094506 (2005).

https://doi.org/10.1063/1.2047629

M. Okabayashi, V. Arunasalam. Nuclear Fusion 17 (3), 497 (1977).

https://doi.org/10.1088/0029-5515/17/3/010

W. Tang, R. White, P. Guzdar. Impurity effects on iondrift-wave eigenmodes in a sheared magnetic field. The Physics of Fluids 23 (1), 167 (1980).

https://doi.org/10.1063/1.862835

Y. Saxena, P. John. Dispersion and spectral characteristics of crossfield instability in collisional magnetoplasma. Pramana 8 (2), 123 (1977).

https://doi.org/10.1007/BF02868062

J. C. Perez, W. Horton, K. Gentle, W. Rowan, K. Lee, R.B. Dahlburg. Drift wave instability in the Helimak experiment. Phys. Plasmas 13 (3), 032101 (2006).

https://doi.org/10.1063/1.2168401

K.H. Burrel. Effects of E × B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices Phys. Plasmas 4 (5), 1499 (1997).

https://doi.org/10.1063/1.872367

P. Satyanarayana, G. Ganguli, S. Ossakow. Influence of magnetic shear on the collisional current driven ion cyclotron instability. Plasma Phys. Controll. Fusion 26 (11), 1333 (1984).

https://doi.org/10.1088/0741-3335/26/11/007

Downloads

Опубліковано

2023-09-08

Як цитувати

Nasrin, S., Das, S., & Bose, M. (2023). Вплив зсуву магнітного поля на дрейфову нестійкість E × B у плазмі. Український фізичний журнал, 68(7), 448. https://doi.org/10.15407/ujpe68.7.448

Номер

Розділ

Фізика плазми