Структурні й оптичні характеристики розподілених за розміром квантових точок Cu–In–S, вкритих глутатіоном

Автор(и)

  • Y.M. Azhniuk Institute of Electron Physics, Nat. Acad. Sci. Ukraine https://orcid.org/0000-0002-9414-0252
  • Ye.O. Havryliuk V. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. Sci. Ukraine, Semiconductor Physics, Chemnitz University of Technology, Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology
  • B.V. Lopushanska Uzhhorod National University
  • V.V. Lopushansky Institute of Electron Physics, Nat. Acad. Sci. Ukraine
  • A.V. Gomonnai Institute of Electron Physics, Nat. Acad. Sci. Ukraine, Uzhhorod National University
  • D.R.T. Zahn Semiconductor Physics, Chemnitz University of Technology, Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology

DOI:

https://doi.org/10.15407/ujpe68.3.190

Ключові слова:

квантовi точки, колоїдний синтез, оптичне поглинання, фотолюмiнесценцiя, дифракцiя рентгенiвських променiв, раманiвська спектроскопiя

Анотація

Реакцiєю обмiну у водних розчинах при помiрних умовах синтезу отримано розподiленi за розмiром серiї збiднених мiддю колоїдних квантових точок (КТ) Cu–In–S, стабiлiзованих глутатiоном. Ширина оптичної забороненої зони та спектральне положення максимуму фотолюмiнесценцiї змiщуються в бiк вищих енергiй зi зменшенням розмiру КТ. На основi даних дифракцiї рентгенiвських променiв показано, що КТ характеризуються тетрагональною структурою типу халькопiриту. Середнi розмiри КТ, оцiненi за формулою Шерера, а також знайденi за розмiрними кривими, побудованими на основi спектрiв поглинання, непогано узгоджуються мiж собою (в iнтервалi 1,2–2,9 нм). Проаналiзовано раманiвськi спектри КТ Cu–In–S з урахуванням їхньої структури, ефектiв, пов’язаних з просторовим обмеженням, вiдхилення вiд стехiометрiї та можливого iснування вторинних фаз.

Посилання

J. Kolny-Olesiak, H. Weller. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 5, 12221 (2013).

https://doi.org/10.1021/am404084d

P. Reiss, M. Carriere, C. Lincheneau, L. Vaure, S. Tamang. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 116, 10731 (2016).

https://doi.org/10.1021/acs.chemrev.6b00116

G. Xu, S. Zeng, B. Zhang, M.T. Swihart, K.T. Yong, P.N. Prasad. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 116, 12234 (2016).

https://doi.org/10.1021/acs.chemrev.6b00290

W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.-Y. Chang. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J. Mater. Chem. B 5, 6193 (2017).

https://doi.org/10.1039/C7TB01156C

O. Yarema, M. Yarema, V. Wood. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I-III-VI materials. Chem. Mater. 30, 1446 (2018).

https://doi.org/10.1021/acs.chemmater.7b04710

Y. Liu, F. Li, H. Huang, B. Mao, Y. Liu, Z. Kang. Optoelectronic and photocatalytic properties of I-III-VI QDs: Bridging between traditional and emerging new QDs. J. Semicond. 41, 091701 (2020).

https://doi.org/10.1088/1674-4926/41/9/091701

O.S. Oluwafemi, E.H.M. Sakho, S. Parani, T.C. Lebepe. Ternary Quantum Dots: Synthesis, Properties, and Applications (Woodhead Publishing, 2021) [ISBN: 978-0-12-818304-5].

O. Stroyuk, O. Raievska, D.R.T. Zahn. Unique luminescent properties of composition-/size-selected aqueous Ag-In-S and core/shell Ag-In-S/ZnS quantum dots. In: Core/Shell Quantum Dots. Edited by X. Tong, Z. M. Wang (Springer, 2020) [ISBN: 978-3-030-46596-4].

https://doi.org/10.1007/978-3-030-46596-4_3

K.E. Knowles, K.H. Hartstein, T.B. Kilburn, A. Marchioro, H.D. Nelson, P.J. Whitham, D.R. Gamelin. Luminescent colloidal semiconductor nanocrystals containing copper: synthesis, photophysics, and applications. Chem. Rev. 116, 10820 (2016).

https://doi.org/10.1021/acs.chemrev.6b00048

A. Raevskaya, V. Lesnyak, D Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, D.R.T. Zahn, A. Eychm¨uller. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots. J. Phys. Chem. C 121, 9032 (2017).

https://doi.org/10.1021/acs.jpcc.7b00849

O. Stroyuk, A. Raevskaya, F. Spranger, O. Selyshchev, V. Dzhagan, S. Schulze, D.R.T. Zahn, A. Eychm¨uller. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C 122, 13648 (2018).

https://doi.org/10.1021/acs.jpcc.8b00106

V.M. Dzhagan, A.P. Litvinchuk, M. Ya. Valakh, M. Kruszynska, J. Kolny-Olesiak, C. Himcinschi, D.R.T. Zahn. Raman scattering in orthorhombic CuInS2 nanocrystals. Phys. Status Solidi A 211, 195 (2014).

https://doi.org/10.1002/pssa.201330229

N.T.M. Thuy, T.T.K. Chi, U.T.D. Thuy, N.Q. Liem. Lowcost and large-scale synthesis of CuInS2 and CuInS2/ZnS quantum dots in diesel. Opt. Mater. 37, 823 (2014).

https://doi.org/10.1016/j.optmat.2014.09.016

S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, A.F. Hepp. Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J. Phys. Chem. B 108, 12429 (2004).

https://doi.org/10.1021/jp049107p

R Xie, M. Rutherford, X. Peng. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 131, 5691 (2009).

https://doi.org/10.1021/ja9005767

D.-E. Nam, W.-S. Song, H. Yang. Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields. J. Mater. Chem. 21, 18220 (2011).

https://doi.org/10.1039/c1jm12437d

T. Akdas, J. Walter, D. Segets, M. Distasoa, B. Winter, B. Birajdar, E. Spiecker, W. Peukert. Investigation of the size-property relationship in CuInS2 quantum dots. Nanoscale 7, 18105 (2015).

https://doi.org/10.1039/C5NR04291G

A. Raevskaya, O. Rosovik, A. Kozytskiy, O. Stroyuk, V. Dzhagan, D.R.T. Zahn. Non-stoichiometric Cu-In-S/ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells. RSC Adv. 6, 100145 (2016).

https://doi.org/10.1039/C6RA18313A

X. Yan, H. Li, Y. Yan, X. Su. Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots. Food Chemistry 173, 179 (2015).

https://doi.org/10.1016/j.foodchem.2014.09.152

M. Jiao, X. Huang, L. Ma, Y. Li, P. Zhang, X. Wei, L. Jing, X. Luo, A. L. Rogach, M. Gao. Biocompatible offstoichiometric copper indium sulfide quantum dots with tunable near-infrared emission via aqueous based synthesis. Chem. Commun. 55, 15053 (2019).

https://doi.org/10.1039/C9CC07674C

L. Jing, S.V. Kershaw, Y. Li, X. Huang, Y. Li, A.L. Rogach, M. Gao. Aqueous based semiconductor nanocrystals. Chem. Rev. 116, 10623 (2016).

https://doi.org/10.1021/acs.chemrev.6b00041

B.V. Lopushanska, Y.M. Azhniuk, V.V. Lopushansky, S.B. Molnar, I.P. Studenyak, O.V. Selyshchev, D.R.T. Zahn. Synthesis from aqueous solutions and optical properties of Ag-In-S quantum dots. Appl. Nanosci. 10, 4909 (2020).

https://doi.org/10.1007/s13204-020-01407-w

B.V. Lopushanska, Y.M. Azhniuk, D. Solonenko, V.V. Lopushansky, I.P. Studenyak, D.R.T. Zahn. Structural and optical study of glutathione-capped Ag-In-S nanocrystals. Molec. Cryst. Liquid. Cryst. 717, 98 (2021).

https://doi.org/10.1080/15421406.2020.1860535

C.I.L. Santos, W.S. Machado, K.D. Wegner, L.A.P. Gontijo, J. Bettini, M.A. Schiavon, P. Reiss, D. Aldakov. Hydrothermal synthesis of aqueous-soluble copper indium sulfide nanocrystals and their use in quantum dot sensitized solar cells. Nanomaterials 10, 1252 (2020).

https://doi.org/10.3390/nano10071252

R.C. Fitzmorris, R.P. Oleksak, Z. Zhou, B.D. Mangum, J.N. Kurtin, G.S. Herman. Structural and optical characterization of CuInS2 quantum dots synthesized by microwave-assisted continuous flow methods. J. Nanopart. Res. 17, 319 (2015).

https://doi.org/10.1007/s11051-015-3123-1

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, Q. Meng. Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 35, 17 (2017).

https://doi.org/10.1016/j.nanoen.2017.03.008

C. Xia, W. Wu, T. Yu, X. Xie, C. Oversteeg, H.C. Gerritsen, C.M. Donega. Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano 12, 8350 (2018).

https://doi.org/10.1021/acsnano.8b03641

O. Raievska, O. Stroyuk, Y. Azhniuk, D. Solonenko, A. Barabash, C.J. Brabec, D.R.T. Zahn. Composition-dependent optical band bowing, vibrational and photochemical behavior of aqueous glutathione-capped (Cu,Ag)-In-S quantum dots. J. Chem. Phys. C 124, 19375 (2020).

https://doi.org/10.1021/acs.jpcc.0c05453

M.H. Y¨ukselici. Growth kinetics of CdSe nanoparticles in glass. J. Phys.: Condens. Matter 14, 1153 (2002).

https://doi.org/10.1088/0953-8984/14/6/304

Yu.M. Azhniuk, V.V. Lopushansky, A.V. Gomonnai, V.O. Yukhymchuk, I.I. Turok, Ya.I. Studenyak. Spectroscopic studies of thermal treatment effect on the composition and size of CdS1−xSex nanocrystals in borosilicate glass. J. Phys. Chem. Solids 69, 139 (2008).

https://doi.org/10.1016/j.jpcs.2007.08.009

O. Stroyuk. Solar Light Harvesting with Nanocrystalline Semiconductors (Springer, 2018) [ISBN: 978-3-319-68879-4].

https://doi.org/10.1007/978-3-319-68879-4

O. Stroyuk, A. Raevskaya, F. Spranger, O. Selyshchev, V. Dzhagan, D. Solonenko, N. Gaponik, D.R.T. Zahn, A. Eychm¨uller. Mercury-indium-sulfide nanocrystals: A new member of the family of ternary In-based chalcogenides. J. Chem. Phys. 151, 144701 (2019).

https://doi.org/10.1063/1.5119991

L. Li, T.J.T. Daou, I. Texier, T.K. Chi, T.T. Kim Chi, N.Q. Liem, P. Reiss. Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem. Mater. 21, 2422 (2009).

https://doi.org/10.1021/cm900103b

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, H.J. Maeda. Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. Chem. Phys. 129, 134709 (2008).

https://doi.org/10.1063/1.2987707

Y. Hamanaka, T. Kuzuya, T. Sofue, T. Kino, K. Ito, K. Sumiyama. Defect-induced photoluminescence and third-order nonlinear optical response of chemically synthesized chalcopyrite CuInS2 nanoparticles. Chem. Phys. Lett. 466, 176 (2008).

https://doi.org/10.1016/j.cplett.2008.10.055

A.E. Raevskaya, O.L. Stroyuk, S.Ya. Kuchmy. Nanoparticles of Ag-In-S and Cu-In-S in aqueous media: preparation, spectral and luminescent properties. Theor. Experim. Chem. 53, 338 (2017).

https://doi.org/10.1007/s11237-017-9533-7

O. Stroyuk, V. Dzhagan, A. Raevskaya, F. Spranger, N. Gaponik, D.R.T. Zahn. Insights into different photoluminescence mechanisms of binary and ternary aqueous nanocrystals from the temperature dependence: A case study of CdSe and Ag-In-S. J. Lumin. 215, 116630 (2019).

https://doi.org/10.1016/j.jlumin.2019.116630

E. Dutkov'a, M.J. Sayagu'es, J. Brianˇcin, A. Zorkovsk'a, Z. Bujˇn'akov'a, J. Kov'aˇc, J. Kov'aˇc Jr., P. Bal'aˇz, J. Ficeriov'a. Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling. J. Mater. Sci. 51, 1978 (2016).

https://doi.org/10.1007/s10853-015-9507-x

S. Sugan, K. Baskar, R. Dhanasekaran. Hydrothermal synthesis of chalcopyrite CuInS2, CuInSe2 and CuInTe2 nanocubes and their characterization. Curr. Appl. Phys. 14, 1416 (2014).

https://doi.org/10.1016/j.cap.2014.08.011

P. Scherrer. Bestimmung der Gr¨oße und der inneren struktur von kolloidteilchen mittels R¨ontgenstrahlen. Nachr. Ges. Wiss. G¨ottingen, Math. - Phys. Klasse. 1918, 98 (1918).

D. Li, Y. Zou, D. Yang. Controlled synthesis of luminescent CuInS2 nanocrystals and their optical properties. J. Lumin. 132, 313 (2012).

https://doi.org/10.1016/j.jlumin.2011.08.030

J. Li, B. Kempken, V. Dzhagan, D.R.T. Zahn, J. Grzelak, S. Mackowski, J. Parisi, J. Kolny-Olesiak. Alloyed CuInS2-ZnS nanorods: Synthesis, structure and optical properties. Cryst. Eng. Comm. 17, 5634 (2015).

https://doi.org/10.1039/C5CE00380F

H. Azimi, S. Kuhri, M.S. Stahl, Y. Hou, D.M. Guldi, C.J. Brabec. Elucidating the excited-state properties of CuInS2 nanocrystals upon phase transformation: Quasiquantum dots versus bulk behavior. Adv. Electron. Mater. 1, 1500040 (2015).

https://doi.org/10.1002/aelm.201500040

V. Dzhagan, B. Kempken, M.Ya. Valakh, J. Parisi, J. Kolny-Olesiak, D.R.T. Zahn. Probing the structure of CuInS2-ZnS core-shell and similar nanocrystals by Raman spectroscopy. Appl. Surf. Sci. 395, 24 (2017).

https://doi.org/10.1016/j.apsusc.2016.08.063

V. Dzhagan, O. Selyshchev, O. Raievska, O. Stroyuk, L. Hertling, N. Mazur, M.Ya. Valakh, D.R.T. Zahn. Phonon spectra of strongly luminescent nonstoichiometric Ag-In-S, Cu-In-S, and Hg-In-S nanocrystals of small size. J. Phys. Chem. C 124, 15511 (2020).

https://doi.org/10.1021/acs.jpcc.0c03268

J. Alvarez-Garcia, A. P'erez-Rodriguez, A. RomanoRodriguez, пїЅ.T. Jawhari, J.R. Morante, R. Scheer, W. Calvet. Raman scattering structural evaluation of CuInS2 thin films. Thin Solid Films 387, 216 (2001).

https://doi.org/10.1016/S0040-6090(00)01714-4

K. Wu, D. Wang. Temperature-dependent Raman investigation of CuInS2 with mixed phases of chalcopyrite and CuAu. Phys. Status Solidi A 208, 2730 (2011).

https://doi.org/10.1002/pssa.201127262

R. Guan, X. Wang, Q. Sun. Structural and optical properties of CuInS2 thin films prepared by magnetron sputtering and sulfurization heat treatment. J. Nanomater. 2015, 579489 (2015).

https://doi.org/10.1155/2015/579489

J.K. Larsen, K.V. Sopiha, C. Persson, C. Platzer-Bj¨orkman, M. Edoff. Experimental and theoretical study of stable and metastable phases in sputtered CuInS2. Adv. Sci. 9, 2200848 (2022).

https://doi.org/10.1002/advs.202200848

R. Bacewicz, W. Ge˛bicki, J. Filipowicz. Raman scattering in CuInS2xSe2(1−x) mixed crystals. J. Phys.: Condens. Matter 6, L777 (1994).

https://doi.org/10.1088/0953-8984/6/49/003

K. Wakita, H. Hirooka, S. Yasuda, F. Fujita, N. Yamamoto. Resonant Raman scattering and luminescence in CuInS2 crystals. J. Appl. Phys. 83, 443 (1998).

https://doi.org/10.1063/1.366658

F.W. Ohrendorf, H. Haeuseler. Lattice dynamics of chalcopyrite type compounds. Part I. Vibrational frequencies. Cryst. Res. Technol. 34, 339 (1999).

https://doi.org/10.1002/(SICI)1521-4079(199903)34:3<339::AID-CRAT339>3.0.CO;2-E

I.H. Choi, D.H. Lee. Resonance Raman scattering and exciton-phonon interactions in CuInS2. J. Kor. Phys. Soc. 44, 1542 (2004).

V. Dzhagan, A.P. Litvinchuk, M.Y. Valakh, D.R.T. Zahn. Phonon Raman spectroscopy of nanocrystalline multinary chalcogenides as a probe of complex lattice structures. J. Phys.: Condens. Matter 35, 103001 (2023).

https://doi.org/10.1088/1361-648X/acaa18

A.V. Gomonnai, Yu.M. Azhniuk, V.O. Yukhymchuk, M. Kranjˇcec, V.V. Lopushansky. Confinement-, surfaceand disorder-related effects in the resonant Raman spectra of nanometric CdS1−xSex crystals. Phys. Stat. Solidi B 239, 490 (2003).

https://doi.org/10.1002/pssb.200301838

V.M. Dzhagan, M.Ya. Valakh, A.E. Raevskaya, A.L. Stroyuk, S.Ya. Kuchmiy, D.R.T. Zahn. Size effects on Raman spectra of small CdSe nanoparticles in polymer films. Nanotechnology 19, 305707 (2008).

https://doi.org/10.1088/0957-4484/19/30/305707

V. Izquierdo-Roca, X. Fontan'e, E. Saucedo, J.S. Jaime-Ferrer, J. Alvarez-Garcia, A. P'erez-Rodriguez, V. Bermudez, J.R. Morante. Process monitoring of chalcopyrite photovoltaic technologies by Raman spectroscopy: an application to low cost electrodeposition based processes. New J. Chem. 35, 453 (2011).

https://doi.org/10.1039/C0NJ00794C

K. Kambas, J. Spyridelis, M. Balkanski. Far-infrared and Raman optical study of α- and β-In2S3 compounds. Phys. Status Solidi B 105, 291 (1981).

https://doi.org/10.1002/pssb.2221050132

O. Surucu, M. Isik, M. Terlemezoglu, N.M. Gasanly, M. Parlak. Structural and temperature-tuned bandgap characteristics of thermally evaporated β-In2S3 thin films. J. Mater. Science: Mater. in Electronics 32, 15851 (2021).

https://doi.org/10.1007/s10854-021-06137-5

Ye. Havryliuk, M.Ya. Valakh, V. Dzhagan, O. Greshchuk, V. Yukhymchuk, A. Raevskaya, O. Stroyuk, O. Selyshchev, N. Gaponik, D.R.T. Zahn. Raman characterization of Cu2ZnSnS4 nanocrystals: phonon confinement effect and formation of CuxS phases. RSC Adv. 8, 30736 (2018).

https://doi.org/10.1039/C8RA05390A

A. Kasuya, K. Watanabe, H. Takahashi, K. Toji, K. Motomiya, Y. Nishina. Stability of SxSey ring clusters studied by Raman scattering. Mater. Sci. Eng. A 217-218, 12 (1996).

https://doi.org/10.1016/S0921-5093(96)10321-X

F. Kyriazis, S.N. Yannopoulos. Colossal photostructural changes in chalcogenide glasses: Athermal photoinduced polymerization in AsxS100−x bulk glasses revealed by nearbandgap Raman scattering. Appl. Phys. Lett. 94, 101901 (2009).

https://doi.org/10.1063/1.3095849

L. Borkovska, A. Romanyuk, V. Strelchuk, Y. Polishchuk, V. Kladko, O. Stroyuk, A. Raevskaya, T. Kryshtab. The photoluminescence properties of CuInS2 and AgInS2 nanocrystals synthesized in aqueous solutions. ECS Transactions 66, 171 (2015).

https://doi.org/10.1149/06607.0171ecst

B.V. Lopushanska, Y.M. Azhniuk, I.P. Studenyak, V.V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn. Optical characterization of colloidal AgInS2 quantum dots synthesized from aqueous solutions. J. Nano- and Electron. Phys. 14, 04010 (2022).

https://doi.org/10.21272/jnep.14(4).04010

Y. Azhniuk, B. Lopushanska, O. Selyshchev, Y. Havryliuk, A. Pogodin, O. Kokhan, A. Ehm, V. Lopushansky, I. Studenyak, D.R.T. Zahn. Synthesis and optical properties of Ag-Ga-S quantum dots. Phys. Status Solidi B 259, 2100349 (2022).

https://doi.org/10.1002/pssb.202100349

Downloads

Опубліковано

2023-05-11

Як цитувати

Azhniuk, Y., Havryliuk, Y., Lopushanska, B., Lopushansky, V., Gomonnai, A., & Zahn, D. (2023). Структурні й оптичні характеристики розподілених за розміром квантових точок Cu–In–S, вкритих глутатіоном. Український фізичний журнал, 68(3), 190. https://doi.org/10.15407/ujpe68.3.190

Номер

Розділ

Напівпровідники і діелектрики