A Theoretical Estimation of Optical, Vibrational and Structural Properties of II–VI Quaternary Alloy Zn0.5Cd0.5SySe1–y

Authors

  • R.K. Jhakal Department of Physics, Government Dungar College
  • M.D. Sharma Department of Physics, Government Dungar College
  • U. Paliwal Department of Physics. Jai Narain Vyas University

DOI:

https://doi.org/10.15407/ujpe68.3.184

Keywords:

II–VI quaternary alloys, empirical pseudopotential method, elastic constants

Abstract

We present a theoretical estimation of optical, vibrational, and structural properties of II–VI semiconducting quaternary alloy Zn0.5Cd0.5SySe1−y for 0 < y < 1 giving total 10 compositions. The estimation of refractive index, elastic constants, bulk modulus, and vibrational frequencies are performed using the important input parameters provided by the empirical pseudopotential method. In this method, the bandgaps are computed, and the alloying effects are modeled through the modified virtual crystal approximation. We have computed the static refractive index, static and high-frequency dielectric constants, longitudinal and transverse optical phonon frequencies, elastic constants, bulk modulus, and cohesive energy for 10 compositions of the alloy. The results are compared to other experimental and theoretical values wherever available.

References

S. Adachi. Properties of Semiconductor alloys Group IV, III-V and II-VI Semiconductors (John Wiley & Sons, 2009) [ISBN:9780470090329].

S. Ikhmayies. Introduction to II-VI Compounds. In Advances in the II-VI Compounds Suitable for Solar Cell Applications Edited by S. Ikhmayies (Research Signpost, 2002) [ISBN: 978-81-308-0533-7].

K. Kishino I. Nomura. II-VI semiconductors on InP for green-yellow emitters. IEEE J. Selected Topics in Quantum Electronics 8, 773 (2002).

https://doi.org/10.1109/JSTQE.2002.801680

R.L. Gunshor, A.V. Nurmikko. II-VI Blue/Green Light Emitters: Device Physics and Epitaxial Growth: Semiconductors and Semimetals (Academic Press, 1997) [ISBN: 978-0124014503].

P. Roblin, H. Rohdin. High-Speed Heterostructure Devices. (Cambridge University Press, 2002) [ISBN: 9780511754593].

https://doi.org/10.1017/CBO9780511754593

C.-H. Moon, S.-H Wei, Y.Z. Zhu, G.D. Chen. Bandgap bowing coefficients in large size-mismatched II-VI alloys: first-principles calculations. Phys. Rev. B 74, 233202 (2006).

https://doi.org/10.1103/PhysRevB.74.233202

M.C. Tamargo. II-VI Semiconductor Materials and Their Applications (Optoelectronic Properties of Semiconductors and Superlattice (Taylor and Francis, 2002) [ISBN: 9781560329145].

K. Godo, M.W. Cho, J. H. Chang, Y. Yamazaki, T. Yao, M.Y. Shen, T. Goto. Composition dependence of the energy gap of Zn1−x−y

MgxBey Se quaternary alloys nearly lattice matched to GaAs. Appl. Phys. Lett. 79, 4168 (2001).

https://doi.org/10.1063/1.1424064

H. Okuyama, Y. Kishita, A. Ishibashi. Quaternary alloy Zn1−xMgxSy Se1−y . Phys. Rev. B 57, 2257 (1998).

https://doi.org/10.1103/PhysRevB.57.2257

W.O. Charles, Y. Yao, K.J. Franz, Q. Zhang, A. Shen, C. Gmachl, M.C. Tamargo. Growth of ZnxCd(1−x)Se/ZnxCdyMg(1−x−y)Se-InP quantum cascade structures for emission in the 3-5 μm range. J. Vac. Sci. Technol. B 28, C3G24 (2010).

https://doi.org/10.1116/1.3276438

Y.D. Kim, M.V. Klein, S.F. Ren, Y.C. Chang, H. Luo, N. Samarth, J.K. Furdyna. Optical properties of zincblende CdSe and ZnxCd1−xSe films grown on GaAs. Phys. Rev. B 49, 7262 (1994).

https://doi.org/10.1103/PhysRevB.49.7262

R. Venugopal, P.-I Lin, Y.-T. Chen. Photoluminescence and Raman scattering from catalytically grown ZnxCd1−xSe alloy nanowires. J. Phys. Chem. B 110, 11691 (2006).

https://doi.org/10.1021/jp056892c

A. Pan, H. Yang, R. Yu, B. Zou. Fabrication and photoluminescence of high-quality ternary CdSSe nanowires and nanoribbons. Nanotechnology 17, 1083 (2006).

https://doi.org/10.1088/0957-4484/17/4/040

T.M. Razykov, S.Zh. Karazhanov, A.Yu. Leiderman, N.F. Khusainova, K. Kouchkarov. Effect of the grain boundaries on the conductivity and current transport in II-VI films. Solar Energy Materials & Solar Cells 90, 2255 (2006).

https://doi.org/10.1016/j.solmat.2006.02.025

S. Fujita, S. Hayashi, M. Funato, T. Yoshie, S. Fujita. Properties of Zn1−xCdxS ternary and Zn1−xCdxS1−ySey quaternary thin films on GaAs grown by OMVPE. J. Cryst. Growth 107, 674 (1991).

https://doi.org/10.1016/0022-0248(91)90540-L

Y. Feng, K.L. Teo, M.F. Li, H.C. Poon, C.K. Ong, J.B. Xia. Empirical pseudopotential band-structure calculation for Zn1−xCdxSySe1−y quaternary alloy. J. Appl. Phys. 74, 3948 (1993).

https://doi.org/10.1063/1.354462

M.L. Cohen, J.R. Chelikowsky. Electronic Structure and Optical Properties of Semiconductors (Springer-Verlag, 1988) [ISBN: 9783540513919].

https://doi.org/10.1007/978-3-642-97080-1

A. Bechiri, F. Benmakhlouf, N. Bouarissa. Band structure of II-V ternary semiconductor alloys beyond the VCA. Mat. Chem. Phys. 77, 507 (2002).

https://doi.org/10.1016/S0254-0584(02)00124-4

M.L. Cohen. The theory of real materials. Annu. Rev. Mater. Sci. 30, 1 (2000).

https://doi.org/10.1146/annurev.matsci.30.1.1

C.B. Swarnkar, R.K. Pandya, U. Paliwal, N.N. Patel, K.B. Joshi. Study of charge density, density of states and electron momentum density of ZnSxSe1−x semiconductor alloy. Chalco. Lett. 6, 137 (2009)

U. Paliwal, R.K. Kothari, K.B. Joshi. Electronic and structural properties of ZnxCd1−xSySe1−y alloys lattice matched to GaAs and InP: An EPM study. Superlatt. Microstruct. 51, 635 (2012).

https://doi.org/10.1016/j.spmi.2012.02.017

L. Vegard. Die konstitution der mischkristalle und die Raumf¨ullung der atome. Z. Physik. 5, 17 (1921).

https://doi.org/10.1007/BF01349680

P. Vogl. Dynamical effective charges in semiconductors: A pseudopotential approach. J. Phys. C: Solid State Physics 1, 251 (1978).

https://doi.org/10.1088/0022-3719/11/2/011

T.S. Moss. A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors. Proc. Phys. Soc. London B 63, 167 (1950).

https://doi.org/10.1088/0370-1301/63/3/302

N. Bouarissa, S. Bougouffa, A. Kamli. Energy g6 6aps and optical phonon frequencies in InP1−xSbx. Semicond. Sci. Technol. 20, 265 (2005).

https://doi.org/10.1088/0268-1242/20/3/002

J.M. Baranowski. Bond lengths, force constants and local impurity distortions in semiconductors. J. Phys. C 17, 6287 (1984).

https://doi.org/10.1088/0022-3719/17/35/005

W.A. Harrison. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover Publications, 1989) [ISBN: 9780486660219].

M. Levinshtein, S. Rumyantsev, M. Shur. Handbook Series on Semiconductor Parameters. Vol 2 (World Scientific, 1999) [ISBN: 9789810214203].

A.S. Verma, B.K. Sarkar, V.K. Jindal. Cohesive energy of zincblende (AIIIBV and AIIBVI) structured solids. Pramana-J. Phys 74, 851 (2010).

https://doi.org/10.1007/s12043-010-0105-9

S.Yu. Davydov, S.K. Tikhonov. Elastic constants and phonon frequencies of wide-gap semiconductors. Semiconductors 30, 447 (1996).

M.J.S.P. Brasil, M.C. Tamargo, R.E. Nahory, H.L. Gilchrist, R.J. Martin. Zn1−yCdySe1−xTex quaternary wide band-gap alloys: Molecular beam epitaxial growth and optical properties. Appl. Phys. Lett. 59, 1206 (1991).

https://doi.org/10.1063/1.105504

K. Benchikh, H. Abid, M. Benchehima. Electronic and optical properties of ternary alloys ZnxCd1−xS,ZnxCd1−xSe, ZnSxSe1−x, MgxZn1−xSe. Mater. Sci.-Poland 35, 32 (2017).

https://doi.org/10.1515/msp-2017-0005

N. Benosman, N. Amrane, H. Aourag. Calculation of electronic and optical properties of zinc-blende ZnxCd1−xSe. Physica B 275, 316 (2000).

https://doi.org/10.1016/S0921-4526(99)00396-8

H. Algarni, N. Bouarissa, M.A. Khan, O.A. Al-Hagan, T.F. Alhuwaymel. Optical constants and exciton properties of ZnxCd1−xS. Optik 193, 163022 (2019).

https://doi.org/10.1016/j.ijleo.2019.163022

N. Korozlu, K. Colakoglu, E. Deligoz, Y.O. Ciftci. The structural, electronic and optical properties of CdxZn1−xSe ternary alloys. Optics Communications 284, 1863 (2011).

https://doi.org/10.1016/j.optcom.2010.11.032

I. Bziz, El H. Atmani, N. Fazouan, M. Aazi. First-principles calculations of structural, electronic and optical properties of CdTexS1−x and Cd1−xZnxS ternary alloys. Surfaces and Interfaces 24, 101126 (2021).

https://doi.org/10.1016/j.surfin.2021.101126

Downloads

Published

2023-05-11

How to Cite

Jhakal, R., Sharma, M., & Paliwal, U. (2023). A Theoretical Estimation of Optical, Vibrational and Structural Properties of II–VI Quaternary Alloy Zn0.5Cd0.5SySe1–y. Ukrainian Journal of Physics, 68(3), 184. https://doi.org/10.15407/ujpe68.3.184

Issue

Section

Semiconductors and dielectrics