Особливості генерування енергетичних станів у напівпровіднику Lu1 – xVxNiSb

Автор(и)

  • V.V. Romaka Leibniz Institute for Solid State and Materials Research (IFW) Dresden
  • V.A. Romaka Lviv Polytechnic National University
  • Yu.V. Stadnyk Ivan Franko National University of Lviv
  • L.P. Romaka Ivan Franko National University of Lviv
  • Y.O. Plevachuk Ivan Franko National University of Lviv
  • A.M. Horyn Ivan Franko National University of Lviv
  • V.Z. Pashkevych Lviv Polytechnic National University
  • P.I. Haraniuk Lviv Polytechnic National University

DOI:

https://doi.org/10.15407/ujpe68.4.274

Ключові слова:

рiвень Фермi, електронна структура, електроопiр, коефiцiєнт термо-ерс

Анотація

Комплексне дослiдження кристалiчної та електронної стру-ктур, термодинамiчних, кiнетичних, енергетичних та магнiтних властивостей напiвпровiдника Lu1−xVxNiSb, x = 0–0,10 встановило можливiсть домiшкових атомiв V одночасно займати рiзнi кристалографiчнi позицiї. При цьому у структурi Lu1−xVxNiSb генеруються дефекти акцепторної та донорної природи, а в забороненiй зонi ϵg з’являються вiдповiднi енергетичнi стани. Спiввiдношення концентрацiй донорно-акцепторних станiв визначає по-ложення рiвня Фермi ϵF та механiзми електропровiдностi Lu1−xVxNiSb. Результати моделювання властивостей напiвпровiдника узгоджуються з даними експериментальних дослiджень. Розумiння механiзму генерування енергетичних станiв у напiвпровiднику у Lu1−xVxNiSb дозволяє моделювати та отримувати новi термоелектричнi матерiали з високою ефективнiстю перетворення теплової енергiї в електричну.

Посилання

K. Hartjes, W. Jeitschko. Crystal structure and magnetichyt56 properties of the lanthanoid nickel antimonides LnNiSb (Ln = La-Nd, Sm, Gd-Tm, Lu). J. Alloys Compd. 226, 81 (1995).

https://doi.org/10.1016/0925-8388(95)01573-6

L.I. Anatychuk. Thermoelements and Thermoelectric Devices. Reference Book (Naukova dumka, 1979) [in Russian].

I. Karla, J. Pierre, R.V. Skolozdra. Physical properties and giant magnetoresistance in RNiSb compounds. J. Alloys Compd. 265, 42 (1998).

https://doi.org/10.1016/S0925-8388(97)00419-2

V.V. Romaka, L. Romaka, A. Horyn, P. Rogl, Yu. Stadnyk, N. Melnychenko, M. Orlovskyy, V. Krayovskyy. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems. J. Solid State Chem. 239, 145 (2016).

https://doi.org/10.1016/j.jssc.2016.04.029

K. Ciesielski, K. Synoradzki, I. Wolanska, P. Stachowiak, L. Kepinski, A. Jezowski, T. Tolinski, D. Kaczorowski. High-temperature power factor of half-Heusler phases RENiSb (RE = Sc, Dy, Ho, Er, Tm, Lu). J. Alloys Compd. 816, 152596 (2020).

https://doi.org/10.1016/j.jallcom.2019.152596

D. Gnida, K. Ciesielski, D. Kaczorowski. Origin of the negative temperature coefficient of resistivity in the halfHeusler antimonides LuNiSb and YPdSb. Phys. Rev. B 103, 174206 (2021).

https://doi.org/10.1103/PhysRevB.103.174206

V.V. Romaka, L. Romaka, A. Horyn, Yu. Stadnyk. Experimental and theoretical investigation of the Y-Ni-Sb and Tm-Ni-Sb systems. J. Alloys Compd. 855, 157334-12 (2021).

https://doi.org/10.1016/j.jallcom.2020.157334

V.V. Romaka, Yu.V. Stadnyk, P.F. Rogl, L.P. Romaka, V.Y. Krayovskyy, A.Y. Horpenyuk, A.M. Horyn. Mechanism of Defect Formation Zr1−xVxNiSn Thermoelectric Material. Ukr. J. Phys. 66, 333 (2021).

https://doi.org/10.15407/ujpe66.4.333

V.A. Romaka, Yu.V. Stadnyk, V.Ya. Krayovskyy, L.P. Romaka, O.P. Guk, V.V. Romaka, M.M. Mykyychuk, A.M. Horyn. The Latest Heat-Sensitive Materials and Temperature Transducers (Lviv Polytechnic Publishing House, 2020) [in Ukrainian].

V.A. Romaka, Yu.V. Stadnyk, L.G. Akselrud, V.V. Romaka, D. Fruchart, P.F. Rogl, V.N. Davydov, Yu.K. Gorelenko. Mechanism of local amorphization of a heavily doped Ti1−xVxCoSb intermetallic semiconductor. Semiconductors 42, 753 (2008).

https://doi.org/10.1134/S1063782608070014

V.A. Romaka, P. Rogl, V.V. Romaka, D. Kaczorowski, Yu.V. Stadnyk, V.Ya. Krayovskyy, A.M. Horyn. Features of conductivity mechanisms in heavily doped compensated V1−xTixFeSb semiconductor. Semiconductors 50, 860 (2016).

https://doi.org/10.1134/S1063782616070204

V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, V.Z. Pashkevych, V.V. Romaka, A.M. Horyn, P.Yu. Demchenko. Study of structural, thermodynamic, energy, kinetic and magnetic properties of thermoelectric material Lu1−xZrxNiSb. J. Thermoelectricity 1, 32 (2021).

V.V. Romaka, V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, P.Y. Demchenko, V.Z. Pashkevych, A.M. Horyn. Featutes of mechanisms of electrical conductivity in semiconductive solid solution Lu1−xScxNiSb. Ukr. J. Phys. 67, 370 (2022).

https://doi.org/10.15407/ujpe67.5.370

T. Roisnel, J. Rodriguez-Carvajal. WinPLOTR: a windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. EPDIC7 378-381, 118 (2001).

https://doi.org/10.4028/www.scientific.net/MSF.378-381.118

G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

https://doi.org/10.1103/PhysRevB.47.558

G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

https://doi.org/10.1103/PhysRevB.59.1758

J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (18), 3865-8 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

H.J. Monkhorst, J.K. Pack. Special points for Brillouinzone integrations. Phys. Rev. B 13, 5188 (1976).

https://doi.org/10.1103/PhysRevB.13.5188

K. Okhotnikov, T. Charpentier, S. Cadars. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8 (17), 1 (2016).

https://doi.org/10.1186/s13321-016-0129-3

P. Vinet, J.H. Rose, J.S. Jr Ferrante. Universal features of the equation of state of solids. J. Phys.: Codens. Matter. 1, 1941 (1989).

https://doi.org/10.1088/0953-8984/1/11/002

A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, C. Draxl. Exciting - a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. J. Phys.: Condens Matter. 26 363202, 1 (2014).

https://doi.org/10.1088/0953-8984/26/36/363202

B.R. Nag. Electron Transport in Compound Semiconductors (Springer Verlag, 1996).

G.D. Mahan and J.O. Sofo. The best thermoelectric. Proc. Natl. Acad. Sci. USA 93, 7436 (1996).

https://doi.org/10.1073/pnas.93.15.7436

T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, H.V. Badding, J.O. Sofo. Transport coefficients from firstprinciples calculations. Phys. Rev. B 68, 125210 (2003).

https://doi.org/10.1103/PhysRevB.68.125210

N.F. Mott and E.A. Davis. Electron Processes in NonCrystalline Materials (Clarendon Press, 1979).

B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors (Springer-Verlag, 1984).

https://doi.org/10.1007/978-3-662-02403-4

Downloads

Опубліковано

2023-06-14

Як цитувати

Romaka, V., Romaka, V., Stadnyk, Y., Romaka, L., Plevachuk, Y., Horyn, A., Pashkevych, V., & Haraniuk, P. (2023). Особливості генерування енергетичних станів у напівпровіднику Lu1 – xVxNiSb. Український фізичний журнал, 68(4), 274. https://doi.org/10.15407/ujpe68.4.274

Номер

Розділ

Напівпровідники і діелектрики