Особливості інваріантної міри дивного атрактора математичної моделі бактерії

Автор(и)

  • V. Grytsay Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.6.443

Ключові слова:

математична модель, метаболiчний процес, дивний атрактор, фазовий простiр, iнварiантна мiра, збiжнiсть

Анотація

Використовуючи класичнi методи синергетики, проведено моделювання метаболiчного процесу бактерiї – вiдкритої нелiнiйної дисипативної системи, далекої вiд рiвноваги. В режимi дивного атрактора розраховується iнварiантна мiра та її збiжнiсть у фазовому просторi системи. Розраховано розподiл густини точок перетину траєкторiєю комiрки фазового простору з максимумом iнварiантної мiри та збiжнiсть по часу її середнього значення. Зроблено висновок: величина iнварiантної мiри може бути характеристикою перехiдного процесу адаптацiї метаболiзму клiтини до змiн у навколишньому середовищi.

Посилання

V.P. Gachok, V.I. Grytsay. The kinetic model of macroporous granule with the regulation of biochemical processes. Dokl. Akad. Nauk SSSR 282, No. 1, 51 (1985).

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, V.K. Akimenko. Kinetic model of hydrocortisone 1-en-dehydrogenation by Arthrobacter globiformis. Biotechn. Bioengin. 33, 661 (1989).

https://doi.org/10.1002/bit.260330602

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, V.K. Akimenko. Kinetic model for the regulation of redox reaction in steroid transformation by Arthrobacter globiformis cells. Biotechn. Bioengin. 33, 668 (1989).

https://doi.org/10.1002/bit.260330603

A.A. Akhrem, Yu.A. Titov. Steroids and Microorganisms (Nauka, 1970) (in Russian).

A.G. Dorofeev, M.V. Glagolev, T.F. Bondarenko, N.S. Panikov. Unusual growth kinetics of Arthrobacter gtlobiformis and its explanation. Mikrobiol. 61, 33 (1992).

V.I. Grytsay. The self-organization in a macroporrous structure of a gel with immobilized cells. The kinetic model of a bioselective membrane of a biosensor. Dopov. NaN Ukr. No. 2, 175 (2000).

V.I. Grytsay. The self-organization in a reaction-diffsion porous medium. Dopov. NaN Ukr. No. 3, 201 (2000).

V.I. Grytsay. Ordered structures in the mathematical model of a biosensor. Dopov. NAN Ukr. No. 11, 112 (2000).

V.I. Grytsay. Structural instability of a biochemical process. Ukr. J. Phys. 55, No. 5, 599 (2010).

V.I. Grytsay, I.V. Musatenko. Self-oscillatory dynamics of the metabolic process in a cell. Ukr. Biochem. Zh. 85, No. 2, 93 (2013).

https://doi.org/10.15407/ubj85.02.093

N.N. Bogolubov. Collected works in 12 volumes (Nauka, 2005) (in Russian).

S.P. Kuznetsov. Dynamial Chaos (Fizmatlit, 2001) (in Russin).

V.S. Anishchenko. Complex Oscillations in Simple Systems (Nauka, 1990) (in Russian).

G.G. Malinetskii, A.B. Potapov. Nonlinear dynamics and chaos: Basic concepts (URSS, 2006) (in Russian).

V.I. Grytsay. Ordered and chaotic structures in the reaction-diffuzive porous media Visn. Kyiv. Univ. No. 2, 394 (2002).

V.I. Grytsay. Condidions of self-organization of prostacyclin and thromboxane. Visn. Kyiv. Univ. No. 3, 372 (2002).

V.I. Grytsay, V.P. Gachok. Regimes of self-irganization in system of protacyclin and thromboxan. Visn. Kiev Univ. No. 4, 365 (2002).

V.I. Grytsay, V.P. Gachok. Ordered structures in mathematical sytem of prostacyclin and tromboxan model. Visn. Kyiv Univ. No. 1, 338 (2003).

V.I. Grytsay. Processes modeling of the multienzyme prostacyclin and thromboxan sytem. Visn. Kyev. Univ. No. 4, 379 (2003).

V.V. Andreev, V.I. Grytsay. Modeling of the inactive zones in porous catalyst granules and in a biosensor. Matem. Modelir. 17, No. 2, 57 (2005).

V.V. Andreev, V.I. Grytsay. Influence of diffusion reaction processes non-informaty on structures formation in porous medium. Matem. Modelir. 17, No. 6, 3 (2005).

V.I. Grytsay, V.V. Andreev. The diffusion role on nonactive structures formation in porous reaction-diffusion medium. Matem. Modelir. 18, No. 12, 88 (2006).

V.I. Grytsay. Uncertainty in the evolution structure of reactiondiffusion medium of bioreactor. Biofiz. Visn. Iss. 2 (19), 92 (2007).

V. Grytsay. Unsteady conditions in a porous reactiondiffusion medium. Romanian J. Biophys. 17, No. 1, 55 (2007).

V.I. Grytsay. Morphogenetic field forming and stability of bioreactor immobilization cells. Biofiz. Visn. Iss. 1 (20), 48(2008).

V.I. Grytsay. Prediction structural instability and type attractor of biochemical process. Biofiz. Visn. Iss. 2 (23), 77 (2009).

V.I. Grytsay, I.V. Musatenko. Self-organization and fractality in a metabolic process of the Krebs cycle. Ukr. Biokhim. Zh. 85, No. 5, 191 (2013).

https://doi.org/10.15407/ubj85.05.191

V.I. Grytsay, I.V. Musatenko. The structure of a chaos of strange attractors within a mathematical model of the metabolism of a cell. Ukr. J. Phys. 58, No. 7, 677 (2013).

https://doi.org/10.15407/ujpe58.07.0677

V. Gytsay, I. Musatenko. A mathematical model of the metabolism of a cell. Self-organization and chaos. Chaotic modeling and Simulation (CMSIM) No. 4, 539 (2013).

V.I. Grytsay, I.V. Musatenko. Self-organization and chaos in the metabolism of a cell. Biopolumers and Cell. 30, No. 5, 403 (2014).

https://doi.org/10.7124/bc.0008B9

V. Grytsay, I. Musatenko. Nonlinear self-organization dynamics of a metabolic process of the Krebs cycle. Chaotic Modeling and Simmulation (CMSIM) 3, 207 (2014).

V.I. Grytsay. Lupanov indices and the Poincare maping in a study of the stability of the Krebs cycle. Ukr. J. Phys. 60, No. 6, 561 (2015).

https://doi.org/10.15407/ujpe60.06.0561

V.I. Grytsay. Self-oranization and fractality in the metabolic process of glycolysis. Ukr. J. Phys. 60, No. 12, 1251 (2015).

https://doi.org/10.15407/ujpe60.12.1251

V. Grytsay. Self-organization and fractality created by gluconeogenesis in the metabolic process. Chaotic Model cing and Simulation (CMSIM), No. 2, 113 (2016).

V.I. Grytsay. Self-organization and chaos in the metabolism of hemostasis in a blood vessel. Ukr. J. Phys. 61, No. 7, 648 (2016).

https://doi.org/10.15407/ujpe61.07.0648

V.I. Grytsay. A mathematical model of the metabolic process of atheroclerosis. Ukr. Bichem. J. 88, No. 4, 75 (2016).

https://doi.org/10.15407/ubj88.04.075

V.I. Grytsay. Spectral analysis and invariant measure in the study of a nonlinear dynamics of the metabolic process in cells. Ukr. J. Phys. 62, No. 5, 448 (2017).

https://doi.org/10.15407/ujpe62.05.0448

V.I. Grytsay, A.G. Medentsev, A.Yu. Arinbasarova. Autoocillatory dynamics in mathematical model of the metabolic process in aerobic bacteria. Influence of the Krebs cycle on the self-organization of a biosytem. Ukr. J. Phys. 65, No. 5, 393 (2020).

https://doi.org/10.15407/ujpe65.5.393

V.I. Grytsay. Spectral analysis and invariant measure in studies of the dynamics of the hemostasis of a blood vessel. Ukr J. Phys. 66, No. 3, 221 (2021).

https://doi.org/10.15407/ujpe66.3.221

V. Grytsay. Spectral analysis and invariant measure in studies of the dynamics of the Krebs cycle. Chaotic Modeling and Simulation (CMSIM) No. 1, 35 (2021).

E. Buzaneva, A. Karlash, K. Yakovkin, Ya. Shtogun, S. Putselyk, D. Zherebetskiy, A. Gorchinskiy, G. Popova, S. Prilutska, O. Matyshevska, Yu.I. Prylutskyy, P. Lytvyn, P. Scharff, P. Eklund. DNA nanotechnology of carbon nanotube cells: Physico-chemical models of self-organization and properties. Mater. Sci. Engineer. C 19, Nos. 1-2, 41 (2002).

https://doi.org/10.1016/S0928-4931(01)00425-8

M.I. Melnyk, I.V. Ivanova, D.O. Dryn, Yu.I. Prylutskyy, V.V. Hurmach, M. Platonov, L.T. Al Kury, U. Ritter, A.I. Soloviev, A.V. Zholos. C60 fullerenes selectively inhibit BKCa but not Kv channels in pulmonary artery smooth muscle cells. Nanotechnology, Biology and Medicine 19, 1 (2019).

https://doi.org/10.1016/j.nano.2019.03.018

L.T. Al Kury, D. Papandreou, V.V. Hurmach, D.O. Dryn, M.I. Melnyk, M.O. Platonov, Yu.I. Prylutskyy, U. Ritter, P. Scharff, A.V. Zholos. Single-walled carbon nanotubes inhibit TRPC4-mediated muscarinic cation current in mouse ileal myocytes. Nanomater. 11, No. 12: 3410 (2021).

https://doi.org/10.3390/nano11123410

Downloads

Опубліковано

2022-10-27

Як цитувати

Grytsay, V. (2022). Особливості інваріантної міри дивного атрактора математичної моделі бактерії. Український фізичний журнал, 67(6), 443. https://doi.org/10.15407/ujpe67.6.443

Номер

Розділ

Загальна фізика