Домішки впровадження у сплавах зі структурою В19
DOI:
https://doi.org/10.15407/ujpe68.6.424Ключові слова:
сплави, розчиннiсть, домiшки впровадження, параметри кореляцiї, домiшки замiщення, структура В19Анотація
У роботi розглянуто метал з гексагональною структурою В19, в мiжвузля якого впроваджуються атоми. Методом конфiгурацiй вивчено розчиннiсть впроваджених домiшок та параметри кореляцiї у замiщеннi вузлiв i мiжвузлiв, знайдено їх залежнiсть вiд складу металу, температури та ступеня дальнього порядку у вузлах. Знання параметрiв кореляцiї дозволяє оцiнити багато фiзичних характеристик сплавiв. Якщо ж параметри кореляцiї вiдомi з експериментiв, отриманi формули дозволяють визначити енергетичнi параметри сплавiв, що має наукову цiннiсть.
Посилання
Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Viziroglu, M.T. Gabdullin, N.F. Dzhavadov, An.D. Zolotarenko, Al.D. Zolotarenko. Hydrogen in Crystals. A Monograph (KIM Publishing House, 2017) (in Russian).
V.M. Gun'ko, V.V. Turov, D.V. Schur, V.I. Zarko, G.P. Prykhod'ko, T.V. Krupska, A.P. Golovan, J. Skubiszewska-Zie˛ba, B. Charmas, M.T. Kartel. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chem. Phys. 459, 172 (2015).
https://doi.org/10.1016/j.chemphys.2015.08.016
M.M. Nishchenko, S.P. Likhtorovich, D.V. Schur, A.G. Dubovoy, T.A. Rashevskaya. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon 41, 1381 (2003).
https://doi.org/10.1016/S0008-6223(03)00065-4
A.F. Savenko, V.A. Bogolepov, K.A. Meleshevich, S.Yu. Zaginaichenko, D.V. Schur, M.V. Lototsky, V.K. Pishuk, L.O. Teslenko, V.V. Skorokhod. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Springer, 2007), p. 365.
https://doi.org/10.1007/978-1-4020-5514-0_47
M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, S.Y. Zaginaichenko. Single-walled carbon nanotubes functionalized with polydiphenylamine as active materials for applications in the supercapacitors field. Diam. Relat. Mater. 32, 72 (2013).
https://doi.org/10.1016/j.diamond.2012.12.006
D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, T.N. Veziroglu. Solubility and transformation of fullerene C60 molecule. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Springer, 2008), p. 85.
https://doi.org/10.1007/978-1-4020-8898-8_7
D.V. Schur, S.Y. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, N.F. Javadov. The forming peculiarities of C60 molecule. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Springer, 2008), p. 53.
https://doi.org/10.1007/978-1-4020-8898-8_5
D.V. Schur, S.Y. Zaginaichenko, T.N. Veziroglu. The hydrogenation process as a method of investigation of fullerene C60 molecule. Int. J. Hydrogen Energ. 40, 2742 (2015).
https://doi.org/10.1016/j.ijhydene.2014.12.092
S.Y. Zaginaichenko, D.V. Schur, Z.A. Matysina. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon 41, 1349 (2003).
https://doi.org/10.1016/S0008-6223(03)00059-9
D.V. Schur, S. Zaginaichenko, T.N. Veziroglu. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. Int. J. Hydrogen Energ. 33, 3330 (2008).
https://doi.org/10.1016/j.ijhydene.2008.03.064
D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko, K.A. Meleshevich. Selection of the hydrogen-sorbing material for hydrogen accumulators. Int. J. Hydrogen Energ. 41, 1811 (2016).
https://doi.org/10.1016/j.ijhydene.2015.10.011
D.V. Schur, M.T. Gabdullin, S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, A.F. Savenko. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. Int. J. Hydrogen Energ. 41, 401 (2016).
https://doi.org/10.1016/j.ijhydene.2015.08.087
S.Y. Zaginaichenko, D.V. Schur, Z.A. Matysina. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon 41, 1349 (2003).
https://doi.org/10.1016/S0008-6223(03)00059-9
A.Yu. Ishlinsky. New Polytechnic Dictionary (Big Russian Encyclopedia, 2000) (in Russian).
Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, An.D. Zolotarenko. The mixed lithium-magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material. Int. J. Hydrogen Energ. 43, 16092 (2018).
https://doi.org/10.1016/j.ijhydene.2018.06.168
A.A. Bogdanov, D. Daininger, G.A. Dyuzhev. Prospects for the development of industrial methods for the production of fullerenes. Zh. Tekhn. Fiz. 70, 1 (2000) (in Russian).
D.V. Shchur, S.Yu. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, A.D. Zolotarenko, M.T. Gabdullin, A.D. Zolotarenko. Features of the study of atomic hydrogen-metal systems. Alternat Energ Ekolog. (ISJAEE) 13-15, 62 (2019) (in Russian).
https://doi.org/10.15518/isjaee.2019.13-15.62-87
Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, T.I. Shaposhnikova. Phase transformations in the mixed lithium-magnesium imide Li2Mg(NH)2. Russ. Phys. J. 61, 2244 (2019).
https://doi.org/10.1007/s11182-019-01662-7
D.V. Schur, A. Veziroglu, S.Y. Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolonarenko, A.D. Zolonarenko. Theoretical studies of lithium-aluminum amid and ammonium as perspective hydrogen storage. Int. J. Hydrogen Energ. 44, 24810 (2019).
https://doi.org/10.1016/j.ijhydene.2019.07.205
Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin. Bialkaline and potassium alanates - promising hydrogen accumulators. Alternat Energ Ekolog. (ISJAEE) 13-15, 37 (2017) (in Russian).
Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin. Hydrogen sorption properties of potassium alanate. Russ. Phys. J. 61, 253 (2018).
https://doi.org/10.1007/s11182-018-1395-5
A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, M.T. Gabdullin. Methods of theoretical calculations and of experimental researches of the system atomic hydrogen-metal. Int. J. Hydrogen Energ. 47, 7310 (2022).
https://doi.org/10.1016/j.ijhydene.2021.03.065
Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D. Schur, A.D. Zolotarenko, N.A. Shvachko. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energ. 46 (50), 25520 (2021).
https://doi.org/10.1016/j.ijhydene.2021.05.069
A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin. The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19. Int. J. Hydrogen Energ. 47 (11), 7281 (2022).
https://doi.org/10.1016/j.ijhydene.2021.03.025
D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, A.D. Zolotarenko. Prospects of producing hydrogen-ammonia fuel based on lithium aluminum amide. Russ. Phys. J. 64 (1), 89 (2021).
https://doi.org/10.1007/s11182-021-02304-7
D.V. Shchur, S.Yu. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N. Gavrylyuk, A.D. Zolotarenko, A.D. Zolotarenko. Prospects of obtaining hydrogen-ammonia fuel using lithium-aluminum amide. Izv. Vyssh. Ucheb. Zaved. Fiz. 64, 78 (2021) (in Russian).
https://doi.org/10.1007/s11182-021-02304-7
Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin. Hydrogen-sorption properties of potassium alanates. Izv. Vyssh. Ucheb. Zaved. Fiz. 61 (2), 44 (2018) (in Russian).
https://doi.org/10.1007/s11182-018-1395-5
D.V.Schur, S.Yu. Zaginaichenko, T.N. Veziroglu, A. Veziroglu, A.P. Pomytkin, An.D. Zolonarenko, A.D. Zolonarenko, Al.D. Zolonarenko. Interaction of elements with hydrogen and with each other. International Association for Hydrogen Energy (IAHE) (2018).
Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, T. Shaposhnikova. Phase transformations in mixed lithium-magnesium imide Li2Mg(NH)2. Izv. Vyssh. Ucheb. Zaved. Fiz. 61 (12), 90 (2018) (in Russian).
https://doi.org/10.1007/s11182-019-01662-7
Z.A. Matysina, An.D. Zolonarenko, Al.D. Zolonarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, M.T. Gabdullin. Features of the Interaction of Hydrogen With Metals, Alloys and Compounds (Hydrogen Atoms in Crystalline Solids). A Monograph (KIM Publishing House, 2022).
D.V. Schur, S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, V.K. Pishuk. Hydrogen in lanthan-nickel storage alloys. J. Alloy. Compd. 330-332, 70 (2002).
https://doi.org/10.1016/S0925-8388(01)01661-9
Yu.M. Lytvynenko, D.V. Schur. Utilization the concentrated solar energy for process of deformation of sheet metal. Renew. Energ. 16, 753 (1999).
https://doi.org/10.1016/S0960-1481(98)00272-9
Z.A. Matysina, O.S. Pogorelova, S.Yu. Zaginaichenko, D.V. Schur. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids 56, 9 (1995).
https://doi.org/10.1016/0022-3697(94)00106-5
Z.A. Matysina, D.V. Shchur. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen concentration. Russ. Phys. J. 44, 1237 (2001).
https://doi.org/10.1023/A:1015318110874
Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energ. 21, 1085 (1996).
https://doi.org/10.1016/S0360-3199(96)00050-X
S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, A.D. Zolotarenko. Li-N-H system - Reversible accumulator and store of hydrogen. Int. J. Hydrogen Energ. 37, 7565 (2012).
https://doi.org/10.1016/j.ijhydene.2012.01.006
D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, S.Yu. Zaginaichenko. Niobium as a construction material for a hydrogen energy system. Int. J. Hydrogen Energ. 20, 405 (1995).
https://doi.org/10.1016/0360-3199(94)00077-D
D.V. Schur, V.A. Lavrenko, V.M. Adejev, I.E. Kirjakova. Studies of the hydride formation mechanism in metals. Int. J. Hydrogen Energ. 19, 265 (1994).
https://doi.org/10.1016/0360-3199(94)90096-5
Z.A. Matysina, S.Y. Zaginaichenko, D.V. Shchur, M.T. Gabdullin. Sorption properties of iron-magnesium and nickel-magnesium Mg2FeH6 and Mg2NiH4 hydrides. Russ. Phys. J. 59, 177 (2016).
https://doi.org/10.1007/s11182-016-0757-0
S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, L.O. Teslenko, A. Veziroglu. The structural vacancies in palladium hydride. Phase diagram. Int. J. Hydrogen Energ. 36, 1152 (2011).
https://doi.org/10.1016/j.ijhydene.2010.06.088
S.Y. Zaginaichenko, D.A. Zaritskii, D.V. Schur, Z.A. Matysina, T.N. Veziroglu, M.V. Chymbai, L.I. Kopylova. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. Int. J. Hydrogen Energ. 40, 7644 (2015).
https://doi.org/10.1016/j.ijhydene.2015.01.089
Z.A. Matysina, S.Y. Zaginaichenko, D.V. Shchur. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Phys. Metal. Metallograph. 114, 308 (2013).
https://doi.org/10.1134/S0031918X13010079
V.I. Trefilov, D.V. Schur, V.K. Pishuk, S.Yu. Zaginaichenko, A.V. Choba, N.R. Nagornaya. Solar furnaces for scientific and technological investigation. Renew. Energ. 16, 757 (1999).
https://doi.org/10.1016/S0960-1481(98)00273-0
I. Khidirov, B.B. Mirzaev, N.N. Mukhtarova, K.M. Kholmedov, S.Y. Zaginaichenko, D.V. Schur. Neutron diffraction investigation of hexagonal and cubic phases of system Ti-C-H. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Springer, 2008), p. 663.
https://doi.org/10.1007/978-1-4020-8898-8_83
R. Tenne, L. Margulis, M. Genut, G. Hodes. Pelyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444 (1992).
https://doi.org/10.1038/360444a0
A.D. Zolotarenko, A.D. Zolotarenko, A.D. Zolotarenko, G.A. Voychuk, D.V. Shchur, S.Yu. Zaginaichenko. Synthesis of endofullerenes by the arc method. Nanosist. Nanomater. Nanotekhnol. 3, 1133 (2005) (in Russian).
Y.I. Sementsov, S.L. Revo, K.O. Ivanenko. Thermoexpanded Eraphite (SPE Interservice, 2016) (in Ukrainian).
N.A. Gavrylyuk, N.E. Akhanova, D.V. Shchur, A.P. Pomytkin, A. Veziroglu, T.N. Veziroglu, A.D. Zolotarenko. Yttrium in fullerenes. Alternat. Energ. Ekology (ISJAEE) 01-03, 47 (2021) (in Russian).
N.Y. Akhanova, D.V. Shchur, A.P. Pomytkin, A.D. Zolotarenko, A.D. Zolotarenko, N.A. Gavrylyuk, D. Ang. Gadolinium endofullerenes. J. Nanosci. Nanotechnol. 21, 2435, (2021).
https://doi.org/10.1166/jnn.2021.18970
N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl. Boron nitride nanotubes. Science 269, 966 (1995).
https://doi.org/10.1126/science.269.5226.966
N.Y. Akhanova, D.V. Shchur, A.P. Pomytkin, A.D. Zolotarenko, A.D. Zolotarenko, N.A. Gavrylyuk, D. Ang. Methods for the synthesis of endohedral fullerenes. J. Nanosci. Nanotechnol. 21, 2446 (2021).
https://doi.org/10.1166/jnn.2021.18971
Y.R. Hacohen, E. Grunbaum, R. Tenne, J. Sloan, J.L. Hutchison. Cage structures and nanotubes of NiCl2. Nature 395, 336 (1998).
N.E. Akhanova, D.V. Shchur, N.A. Gavrilyuk, M.T. Gabdullin, N.S. Anikina, A.D. Zolotarenko, D.G. Batryshev. Use of absorption spectra for identification of endometallofullerenes. Khim. Fiz. Tekhnol. Poverkh. 11, XXXXXX (2020).
M. Cote, M.L. Cohen, D.J. Chadi. Theoretical study of the structural and electronic properties of GaSe nanotubes Phys. Rev. B 58, 4277 (1998).
https://doi.org/10.1103/PhysRevB.58.R4277
N.A. Gavrylyuk, N.Y.Akhanova, D.V. Schur, A.P. Pomytkin, A. Veziroglu, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, Al.D. Zolotarenko, An.D. Zolotarenko. Yttrium in fullerenes. Int. Sci. J. Alternat. Energ. Ecol. (ISJAEE) 01-03, 359 (2021).
I. Melikhov. Physicochemical Evolution of Solids (Binom. 2014) (in Russian).
N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, D.G. Batrishev. Use of absorption spectra for identification of endometallofullerenes. Chem. Phys. Technol. Surf. 11, 429 (2020).
https://doi.org/10.15407/hftp11.03.429
V.S. Ponomarenko, Y.F. Nazarov, V.P. Svidersky, I.M. Ibragimov. Nanotechnology and Its Innovative Development: A Monograph (VD "Inzhek", 2008) (in Ukrainian).
D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, M.V. Chimbai, N.Y. Akhanova, E.P. Zolotarenko. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium. Curr. Trends Chem Eng. Technol. 01, 1 (2018).
https://doi.org/10.26577/phst-2019-1-p9
P.N. Dyachkov. Carbon Nanotubes: Structure, Properties, Application (Binomial, 2006) (in Russian).
D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, M.V. Chimbai, N.Y. Akhanova, E.P. Zolotarenko. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium. Phys. Sci. Technol. 6, 46 (2019).
https://doi.org/10.26577/phst-2019-1-p9
L.S. Polak, A.S. Mikhailov. Self-Organization in Nonequilibrium Physicochemical Systems (Nauka, 1983) (in Russian).
A.D. Zolotarenko, A.D. Zolotarenko, V.A. Lavrenko, S.Y. Zaginaichenko, N.A. Shvachko, O.V. Milto, Y.A. Tarasenko. Encapsulated ferromagnetic nanoparticles in carbon shells. In Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Springer, 2011), p. 127.
https://doi.org/10.1007/978-94-007-0899-0_10
N. Kobayashi. Introduction to Nanotechnology (Binom, 2008) (in Russian).
M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, S. Orazbayev. The influence of magnetic field on synthesis of iron nanoparticles. J. Nanosci. Nanotechnol. Appl. 3, 1 (2019).
G.M. Butyrin. Highly Porous Carbon Materials (Khimiya, 1976) (in Russian).
Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, O.O. Havryliuk. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Khim. Fiz. Tekhnol. Poverkh. 13, 209 (2022).
L.S. Polak. Non-Equilibrium Chemical Kinetics and Its Applications (Nauka, 1979) (in Russian).
O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, Y.O. Tarasenko. The mechanism of forming carbon nanostructures by electric arc-method. Poverkhnya 12, 263 (2020) (in Ukrainian).
https://doi.org/10.15407/Surface.2020.12.263
Yu.L. Klimontovich. Turbulent Motion and the Structure of Chaos. A New Approach to the Statistical Theory of Open Systems (Kluwer Academic, 1991).
https://doi.org/10.1007/978-94-011-3426-2_7
S.Yu. Zaginaichenko, D.V. Shchur, M.T. Gabdullin, N.F. Dzhavadov, A.D. Zolotarenko, A.D. Zolotarenko, Z.T. Mammadov. Features of pyrolytic synthesis and certification of carbon nanostructured materials. Alternat. Energ. Ekol (ISJAEE) 19-21, 72 (2018) (in Russian).
https://doi.org/10.15518/isjaee.2018.19-21.072-090
Yu.L. Klimontovich. The Kinetic Theory of Electromagnetic Processes (Spronger-Verlag, 1983).
https://doi.org/10.1007/978-3-642-81822-6
V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metall. Met. C 56, 504 (2018).
https://doi.org/10.1007/s11106-018-9922-z
Ya.V. Zaulichny, S.S. Petrovskaya, E.A. Graivoronskaya, Yu.M. Solonin. Carbon Nanomaterials: Electronic Structure and Processes of Structure Formation (Naukova Dumka, 2012) (in Russian).
V.P. Tereshchenko, N.T. Kartel. Medical and Biological Effects of Nanoparticles: Realities and Forecasts (Naukova Dumka, 2010) (in Russian).
A.G. Dubovoi, A.E. Perekos, V.A. Lavrenko, Yu.M. Rudenko, T.V. Efimova, V.P. Zalutsky, A.D. Zolotarenko. Influence of magnetic field on the phase-structural state and magnetic properties of fine Fe powders obtained by electrospark dispersion. Nanosyst. Nanomater. Nanotekhnol. 11, 131 (2013) (in Russian).
K.V. Chuistov, A.E. Perekos. Structure and properties of small metal particles. I. Phase-structural state and magnetic characteristics (review). Metallofiz . Noveish. Tekhnol. 19, 36 (1997) (in Russian).
I.A. Tarkovskaya. One Hundred "Professions" of Coal (Naukova Dumka, 1970) (in Russian).
A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, Y.A. Tarasenko. The peculiarities of nanostructures formation in liquid phase. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Springer, 2011), p. 137.
https://doi.org/10.1007/978-94-007-0899-0_11
D. Kondepudi, I. Prigogine. Modern Thermodynamics: From Heat Engines to Dissipative Structures (John Wiley and Sons, 2015).
https://doi.org/10.1002/9781118698723
N.T. Kartel, Yu.A. Taraseko. Zeolites and carbon materials. In: Surface Physics and Chemistry. Book II. Surface chemistry. Edited by N.T. Kartel and V. Lobanova (A.A. Chuiko Institute of Surface Chemistry NAS of Ukraine; LLC "NPP Interservice", 2018) 2, Chap. 22-28. P. 754-967 [in Russian].
Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, A.D. Zolotarenko. Electric conductive composites based on metal oxides and carbon nanostructures. Metallofiz. Noveish. Tekhnol. 43, 1417 (2021).
K.V. Chuistov, A.E. Perekos, V.P. Zalutsky et al. Influence of production conditions on the structural state, phase composition and dispersion of electroerosive powders of iron and alloys on its basis. Metallofiz. Noveishie Tekhnol. 18 (8), 18 (1996) (in Russian).
I.P. Suzdalev. Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials (KomKniga, 2009) [in Russian].
A.A. Volodin, A.D. Zolotarenko, A.A. Belmesov, E.V. Gerasimova, D.V. Shchur, V.R. Tarasov, A.D. Zolotarenko. Electrically conductive composite materials based on metal oxides and carbon nanostructures. Nanosyst. Nanomater. Nanotekhnol. 12, 705 (2014) (in Russian).
V.I. Saranchuk, M.A. Ilyashov, V.V. Oshovsky, E.V. Saranchuk. Carbon: unknown about known. In: Mechanisms of the Realized Crystallization of Carbon Modifications (UK Center, 2009), p. 22 (in Russian).
G.B. Sergeev. Nanochemistry (Moscow State University, 2003) [in Russian].
V.A. Lavrenko et al. Electrochemical synthesis of ammonium persulfate (NH4)2S2O8 using oxygen-depolarized porous silver cathodes produced by powder metallurgy methods. Powder Metall. Met. C 57, 596 (2019).
https://doi.org/10.1007/s11106-019-00021-y
E.A. Kats. Fullerenes, Carbon Nanotubes, and Nanoclusters: Genealogy of Forms and Ideas (URSS. Publishing house LCI, 2008) [in Russian].
Y.I. Sementsov. Formation of Structure and Properties of sp2-carbon Nanomaterials and Functional Composites With Their Participation (SPE Interservice, 2019) [in Ukrainian].
S.A. Baskakov et al. New composite materials based on reduced graphene oxide and polyaniline in high-capacitance supercapacitors. Nanosyst. Nanomater. Nanotekhnol. 13, 37 (2015) [in Russian].
D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, V.V. Skorokhod. Synthesis of carbon nanostructures in gaseous and liquid medium. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Springer, 2007), p. 199.
https://doi.org/10.1007/978-1-4020-5514-0_25
Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, М. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, Yu.O. Tarasenko. Plasmochemical synthesis of platinumcontaining carbon nanostructures suitable for cjp 3d-printing. Metallofiz. Noveish. Tekhnol. 44, 343 (2022).
A.P. Shpak, Y.A. Kunitsky, V.A. Prokopenko, S.Y. Smyk. Self-Organization Processes in Materials of Different Nature (2004) (in Ukrainian).
D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, N.E. Skryabina. Hydrogenation of fullerite C60 in gaseous phase. In Carbon Nanomaterials in Clean Energy Hydrogen Systems - II. NATO Science for Peace and Security Series C: Environmental Security, Vol 2 (Springer, 2011), p. 87.
https://doi.org/10.1007/978-94-007-0899-0_7
V.I. Trefilov, D.V. Shchur, B.P. Tarasov, Yu.M. Shulga, A.V. Chernogorenko, V.K. Pishuk, S.Yu. Zaginaichenko. Fullerenes - the Basis of Materials of the Future (ADEFUkraine, 2001) (in Russian).
M.A. Krivoglaz. Solubility in ordering alloys. Zh. Tekhn. Fiz. 24, 1077 (1954) (in Russian).
Z.A. Matysina. Solubility in ordering alloys. Izv. Vyssh. Ucheb. Zaved. Fiz. 8, 52 (1976) (in Russian).
https://doi.org/10.1007/BF00893801
A.A. Smirnov. Theory of Interstitial Alloys (Nauka, 1979) (in Russian).
M.A. Krivoglaz, A.A. Smirnov. Theory of Order-Disorder in Alloys (MacDonald, 1969).
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.