Дослідження на базі перших принципів впливу концентрації на електронні та вібраційні влас¬тивості бор-алюмофосфідного сплаву з вурцоїдною наноструктурою
DOI:
https://doi.org/10.15407/ujpe67.10.750Ключові слова:
BxAl1−xP7 вурцоїд, iнфрачервоний i раманiвський спектри, наномасштабАнотація
Розглядаються вiбрацiйнi та електроннi властивостi бiнарних Al7P7 i B7P7 та потрiйного BxAl7-xP7 вурцоїдiв з використанням теорiї функцiонала густини (ТФГ). Для рiзних концентрацiй x виконано розрахунки i моделювання довжин зв’язкiв, енергетичної щiлини, густини станiв, силових констант, редукованих мас та iнфрачервоних i раманiвських спектрiв. Використовуючи програму Gauss view 05, ми проаналiзували геометричну наноструктуру сполуки BxAl7-xP7. Енергетична щiлина стає ширшою, коли концентрацiя бору зростає, що узгоджується з експериментальними даними. У розрахунках для всiх електронiв використано метод B3LYP ТФГ у базисi 6-311-G** в узагальненому градiєнтному наближеннi.
Посилання
R.W.G. Wyckoff. Crystal Structures. 2nd Edition (Krieger, 1986).
O. Madelung. Semiconductors: Data Handbook (Springer, 2004) [ISBN: 978-3-642-18865-7].
https://doi.org/10.1007/978-3-642-18865-7
I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001).
https://doi.org/10.1063/1.1368156
R.M. Wentzcovitch, M.L. Cohen. Theory of structural and electronic properties of BAs. J. Phys. C Solid State Phys. 19, 6791 (1986).
https://doi.org/10.1088/0022-3719/19/34/016
E. Schroten, A. Geossens, J. Schoonman. Photo- and electro reflectance of cubic boron phosphide. J. Appl. Phys. 83 (3), 1660 (1998).
https://doi.org/10.1063/1.366881
B. Bouhafs, H. Aourag, M. Cartier. Trends in band-gap pressure coefficients in boron compounds BP, BAs, and BSb. J. Phys. Condens. Matter. 12, 5655 (2000).
https://doi.org/10.1088/0953-8984/12/26/312
W.T. Masselink, A.A. Ketterson, J.S. Gedymin, J. Klem, C.K. Peng, W.F. Kopp, H. Morkoc, K.R. Gleason. Characterization of InGaAs/AlGaAs pseudomorphic modulationdoped field-effect transistors. IEEE Trans. on Electron Devices 33, 564 (1986).
https://doi.org/10.1109/T-ED.1986.22533
O. Nemiri, S. Ghemid, Z. Chouahda, H. Meradji, F. El Haj Hassan. Structural, electronic, thermodynamic and thermal properties of zinc blende InP, InAs and their InAsxP1−x ternary alloys via first principles calculations. Int. J. Mod. Phys. B 27 (25), 1350166 (2013).
https://doi.org/10.1142/S021797921350166X
A. Bentouaf, M. Ameri, R. Mebsout, D. Hachemane, Theoretical study of structural, electronic, optical and thermodynamic properties of AlP, InP and AlAs compounds. J. Optoelectron. Adv. Mater. 7 (9-10), 659 (2013).
S. Lakel, F. Okbi, H. Meradji. Optical and electronic properties of BxAl1−xP alloys: A first principles study. Optik 127, 3755 (2016).
https://doi.org/10.1016/j.ijleo.2015.12.147
Huihui Ma, Junqin Zhang, Bin Zhao, Qun Wei, Yintang Yang. First-principles study on mechanical and elastic properties of BxAl1−xP alloys. AIP Advances 7, 065007 (2017).
https://doi.org/10.1063/1.4985254
M.N. Rasul, A. Anam, M. Atif Sattar, A. Manzoor, A. Hussain. DFT based structural, electronic and optical properties of B1−xInxP (x = 0.0, 0.25, 0.5, 0.75, 1.0) compounds: PBE-GGA vs. mBJ-approaches. Chin. J. Phys. 56, 2659 (2018).
https://doi.org/10.1016/j.cjph.2018.10.022
D.M. Hoat, J.F. Rivas Silva, A. Mendez Blas. First principles study on structural, electronic and optical properties of Ga1−xBxP ternary alloys (x = 0, 0.25, 0.5, 0.75 and 1). Phys. Lett. 382, 19421949 (2018).
https://doi.org/10.1016/j.physleta.2018.05.014
V.A. Fock. Fundamental of Quantum Mechanics (Mir publishers, 1986).
R.D. Johnson III. NIST Computational Chemistry Comparison and Benchmark Database (Reference Database Number 101 Release, 1999).
M.T. Hussein, T.A. Fayad, M.A. Abdulsattar. Concentration effects on electronic and spectroscopic properties of ZnCdS wurtzoids: A Density functional theory study. Chalcogenide Lett. 16 (11), 557 (2019).
M.T. Hussein, H.A. Thjeel. Study of geometrical and electronic properties of ZnS wurtzoids via DFT. Chalcogenide Lett. 15 (10), 523 (2018).
A. Frisch, H.P. Hratchian, R.D. Dennington, II, T.A. Keith, J. Millam, A.B. Nielsen, A.J. Holder, J. Hiscocks. GaussView Version 5.0 (Gaussian Inc., 2009).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov et al. Gaussian 09 (Gaussian Inc., 2009).
V.P. Kumar, A.Y. Sharma, D.K. Sharma, D.K. Dwivedi. Effect of sintering aid (CdCl2) on the optical and structural properties of CdZnS screen-printed film. Opt. Int. J. Light Electron. Optics 125, 1209 (2014).
https://doi.org/10.1016/j.ijleo.2013.07.158
T.P. Sharma, D. Patidar, N.S. Saxena, K. Sharma. Measurement of structural and optical band gaps of Cd1−xZnx (x = 4 and 6) nanomaterials. Indian J. Pure Appl. Phys. 44 (2), 125 (2006).
M.A. Mahdi, S.K. Al-Ani. Optical characterization of chemical bath deposition Cd1−xZnxS thin films. Int. J. Nanoelectron. Mater. 5, 11 (2012).
Saif Ullah, Pablo A. Denis,and Fernando Sato. Hydrogenation and fluorination of 2d boron phosphide and boron arsenide: A density functional theory investigation., ACS Omega 3, 16416 (2018).
https://doi.org/10.1021/acsomega.8b02605
K.J. Chang, S. Froyen, M.L. Cohen. Electronic band structures for zinc-blende and wurtzite CdS. Phys. Rev. B 28, 4736 (1983).
https://doi.org/10.1103/PhysRevB.28.4736
S. Farid, M.A. Stroscio, M. Dutta. Multiphonon Raman scattering and photoluminescence studies of CdS nanocrystals grown by thermal evaporation. Super Lattices and Microstructures 115, 204 (2018).
https://doi.org/10.1016/j.spmi.2018.01.024
O. Brafman, G. Lengyel, S.S. Mitra. Raman spectra of AlN, cubic BN and BP. SolLd State Communications 6, 523 (1968).
https://doi.org/10.1016/0038-1098(68)90503-6
H.W. Leite Alves, K. Kunc. Lattice dynamics of boron phosphide. J. Phys.: Condens. Marter. 4, 6603 (1992).
https://doi.org/10.1088/0953-8984/4/31/012
S.Q. Wang, H.Q. Ye. Ab initio investigation of the pressure dependences of phonon and dielectric properties for III-V semiconductors. J. Phys.: Condens. Matter. 17, 4475 (2005).
https://doi.org/10.1088/0953-8984/17/28/007
H.A. Fayyadh. Stability, Structural and Electronic properties of indium phosphide wurtzite-diamantane molecules and nanocrystals: A density functional theory study. J. Nano Research 69, 1 (2021).
https://doi.org/10.4028/www.scientific.net/JNanoR.69.1
M.M. Habib, M.T. Hussein. Study the electronic and spectroscopic properties of AlxB7−xN7 Wurtzoids as a function of size and concentration using density functional theory. Materials Today: Proceedings 42, 2353 (2021).
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.