Стаціонарна спектроскопія та субнаносекундний резонансний перенос енергії екситонного збудження водних розчинів та плівок нанокристалів ZnSe
DOI:
https://doi.org/10.15407/ujpe67.7.544Ключові слова:
енергiя екситонного збудження, екситон, ZnSe, нанокристалАнотація
Твердi щiльно-упакованi плiвки напiвпровiдникових нанокристалiв (НК) проявляють специфiчнi оптоелектроннi властивостi, зумовленi сильною квантовою взаємодiєю I гiбридизацiєю орбiталей екситонiв мiж НК. Це вiдкриває шляхи до створення нових штучних свiтлозбираючих комплексiв та фотовольтаїчних структур з просторовим роздiленням електронiв та дiрок. Метою даної роботи було дослiдження колоїдних розчинiв та твердих плiвок НК ZnSe, стабiлiзованих тiоглiцеролом, за допомогою стацiонарних та часороздiльних вимiрiв оптичних спектрiв. Ми виявили, що в розчинах НК переважає релаксацiя та рекомбiнацiя екситонiв через поверхневi та дефектнi стани електронiв та дiрок, в той час як в плiвках домiнуючим каналом релаксацiї екситонiв переважно є квантовий (внутрiшнiй). Причина домiнування останнього зумовлена швидким (субнаносекундним) переносом енергiї екситонного збудження в плiвках вiд менших НК до бiльших, що було встановлено через вимiри спектрiв фотолюмiнесценцiї з роздiленням у часi. Окрiм цього, ми виявили два типи внутрiшньощiлинних станiв екситонiв у малих НК ZnSe, утворених окисленням та гiдроксилюванням їхньої поверхнi, i незвичайну “залежнiсть” цих станiв вiд розмiру НК.
Посилання
M. Achermann, M.A. Petruska, D.D. Koleske, M.H. Crawford, V. I. Klimov. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett. 6, 1396 (2006).
https://doi.org/10.1021/nl060392t
R.D. Harris, S.B. Homan et al. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865 (2016).
https://doi.org/10.1021/acs.chemrev.6b00102
N. Hildebrandt, Ch.M. Spillmann, W.R. Algar et al. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem.Rev. 117, 536 (2017).
https://doi.org/10.1021/acs.chemrev.6b00030
P. Nagpal, V.I. Klimov. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystals films. Nat. Comm. 2, 486 (2011).
https://doi.org/10.1038/ncomms1492
J. Min, Ying Zhang, Y. Zhou, D. Xu, Ch. S. Garoufalis, Z. Zeng, H. Shen, S. Baskoutas, Yu Jia, Z. Du. Size engineering of trap effects in oxidized and hydroxylated ZnSe quantum dots. Nano Lett. 22, 3604 (2022).
https://doi.org/10.1021/acs.nanolett.2c00118
V.V. Nikesh, A.D. Lad, S. Kimura, Sh. Nozaki. Electron energy levels in ZnSe quantum dots. J. Appl. Phys. 100, 113520 (2006).
https://doi.org/10.1063/1.2397289
Min Gao, H. Yang, H. Shen, Zaiping Zeng, Fengjia Fan, Beibei Tang, Jingjing Min, Ying Zhang, Qingzhao Hua, Lin Song Li, Botao Ji, Zuliang Du. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252 (2021).
https://doi.org/10.1021/acs.nanolett.1c02284
W. Jaskolski, G.W. Brayany et al. Artificial molecules. Int. J. Quant. Chem. 90, 1075 (2002).
https://doi.org/10.1002/qua.10331
D. Jasrasaria, J.P. Philbin, Ch. Yan, D. Weinberg, A.P. Alivisatos, E. Rabani. Sub-bandgap photoinduced transient absorption features in CdSe nanostructures: The role of trapped holes. J. Phys. Chem. C 124, 17372 (2020).
https://doi.org/10.1021/acs.jpcc.0c04746
B.R. Watson, W.B. Doughty, T.R. Calhoun. Energetics at the surface: Direct optical mapping of core and surface electronic structure in CdSe quantum dots using broadband electronic sum frequency generation microspectroscopy. Nano Lett. 19, 6157 (2019).
https://doi.org/10.1021/acs.nanolett.9b02201
A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana. Origin of surface trap states in CdS quantum dots: Relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys. 17, 2850 (2015).
https://doi.org/10.1039/C4CP04761C
K. de L. Kristiansena, A. Woutersea, A. Philipse. Simulation of random packing of binary sphere mixtures by mechanical contraction. Physica A 358, 249 (2005).
https://doi.org/10.1016/j.physa.2005.03.057
Z. Lingley, S. Lu, A. Madhukar. The dynamics of energy and charge transfer in lead sulfide quantum dot solids. J. Appl. Phys. 115, 084302 (2014).
https://doi.org/10.1063/1.4866368
J.E. Lewis, S. Wu, X.J. Jiang. Unconventional gap state of trapped exciton in lead sulfide quantum dots. Nanotechnology 21, 455402 (2010).
https://doi.org/10.1088/0957-4484/21/45/455402
M. Abdellah, K.J. Karki, N. Lenngren et al. Ultra longlived radiative trap states in CdSe quantum dots. J. Phys. Chem. C 118, 21682 (2014).
https://doi.org/10.1021/jp506536h
Jian Zhang, Xiaomei Jiang. Confinement-dependent below-gap state in PbS quantum dot films probed by continuous-wave photoinduced absorption. J. Phys. Chem. B 112, 9557 (2008).
https://doi.org/10.1021/jp8047295
N.V. Bondar, M.S. Brodyn, O.V. Tverdokhlibova, N.A. Matveevskaya, T.G. Beynik. Influence of a capping ligand on the band gap and excitonic levels in colloidal solutions and films of ZnSe quantum dots. Ukr. J. Phys. 64, 425 (2019).
https://doi.org/10.15407/ujpe64.5.425
N.V. Bondar, M.S. Brodyn, N.A. Matveevskaya, T.G. Beynik. Efficient and sub-nanosecond resonance energy transfer in close-packed films of ZnSe quantum dots by steady-state and time-resolved spectroscopy. Superlatt. Microstruct. 130, 106382 (2020).
https://doi.org/10.1016/j.spmi.2019.106382
S. Lu, A. Madhukar. Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels. Nano Lett. 7, 3443 (2007).
https://doi.org/10.1021/nl0719731
J. Giblin, M. Kuno. Nanostructure absorption: A comparative study of nanowire and colloidal quantum dot absorption cross sections. J. Phys. Chem. Lett. 1, 3340 (2010).
https://doi.org/10.1021/jz1013104
S.F. Wuister, C. de Mello Donega, A. Meijerink. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B 108, 17393 (2004).
https://doi.org/10.1021/jp047078c
Y. Hinuma, A. Gruneis, G. Kresse, F. Oba. Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys. Rev. B 90, 155405 (2014).
https://doi.org/10.1103/PhysRevB.90.155405
Bo Li, P.J. Brosseau, D.P. Strandell, T.G. Mack, P. Kambhampati. Photophysical action spectra of emission from semiconductor nanocrystals reveal violations to the vavilov rule behavior from hot carrier effects. J. Phys. Chem. C 123, 5092 (2019).
https://doi.org/10.1021/acs.jpcc.8b11218
A.D. Dukes, M.A. Schreuder, J.A. Sammons et al. Pinned emission from ultrasmall cadmium selenide nanocrystals. J. Chem. Phys. 129, 121102 (2008).
https://doi.org/10.1063/1.2983632
G.A. Beane, A.J. Morfa, A.M. Funston, P. Mulvaney. Defect-mediated energy transfer between ZnO nanocrystals and a conjugated dye. J. Phys. Chem. C 116, 3305 (2012).
https://doi.org/10.1021/jp209638g
J.B. Hoffman, H. Choi, P.V. Kamat. Size-dependent energy transfer pathways in CdSe quantum dot-squaraine lightharvesting assemblies: F¨orster versus Dexter. J. Phys. Chem. C 118, 18453 (2014).
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.