Дослідження розряду крізь діелектричний неоновий бар’єр з деякою густиною метастабільних атомів при низькому тиску на ємнісно залежній радіочастоті: вплив тиску

Автор(и)

  • A. Bouchikhi University of Sa¨ıda, Faculty of technology, Department of electrical engineering

DOI:

https://doi.org/10.15407/ujpe67.7.504

Ключові слова:

ємнiсно залежний, радiочастотний жеврiючий розряд, закон Гауса, розряди крiзь дiелектричний бар’єр

Анотація

Дослiджено розряд крiзь дiелектричний неоновий бар’єр з певною густиною метастабiльних атомiв на ємнiсно залежнiй радiочастотi при тиску бiля 4–12 Торр. Параметри транспорту у неонi залежать вiд енергiї електронiв в iнтервалi 0,04–50 еВ. Використано одновимiрну модель рiдини I теорiю дрейфу-дифузiї для опису таких розрядiв. В режимi усереднення по циклу розглянуто вплив тиску на властивостi розрядiв. Показано, що густини частинок, електричний потенцiал та густина метастабiльних атомiв збiльшуються з тиском. Також зростають концентрацiя поверхневого заряду i напруга на бар’єрному промiжку.

Посилання

T. Samir, Y. Liu, L.-L. Zhao, Y.-W. Zhou. Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure. Chin. Phys. B 26, 115201 (2017).

https://doi.org/10.1088/1674-1056/26/11/115201

L.-L. Zhao, Y. Liu, T. Samir. Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model. Chin. Phys. B 26, 125201 (2017).

https://doi.org/10.1088/1674-1056/26/12/125201

M. Meyyappan, J.P.L. Kreskovsky. Glow discharge simulation through solutions to the moments of the Boltzmann transport equation. J. Appl. Phys. 68, 1506 (1990).

https://doi.org/10.1063/1.346652

B. Hechelef, A. Bouchikhi. Current-voltage characteristics in a helium-argon gas mixture glow discharge at low pressure. Acta Physica Polonica A 136, 855 (2019).

https://doi.org/10.12693/APhysPolA.136.855

M.M. Becker, D. Loffhagen. Enhanced reliability of drift-diffusion approximation for electrons in fluid models for nonthermal plasmas. AIP Advances 3, 012108 (2013).

https://doi.org/10.1063/1.4775771

T. Alili, A. Bouchikhi, M. Rizouga. Investigations of argon and neon abnormal glow discharges in the presence of metastable atom density with fluid model. Can. J. Phys. 94, 731 (2016).

https://doi.org/10.1139/cjp-2015-0692

M.M. Becker, D. Loffhagen W. Schmidt. A stabilized Finite Element Method for Modeling of gas Discharges. Comp. Phys. Com. 180, 1230 (2009).

https://doi.org/10.1016/j.cpc.2009.02.001

B. Hechelef, A. Bouchikhi. Identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure. Plasma Sci. Tech. 20, 115401 (2018).

https://doi.org/10.1088/2058-6272/aac693

Abdelaziz Bouchikhi. Physical proprieties of DC glow discharges in a neon-argon gas mixture. Can. J. Phys. 96, 62 (2018).

https://doi.org/10.1139/cjp-2017-0120

A. Bouchikhi. Nonlocal ionization theory and secondary electron emission coefficient: Application in helium and neon DC microdischarge at high pressure. IEEE Trans. Plasma Science 9, 4260 (2019).

https://doi.org/10.1109/TPS.2019.2933455

A. Bouchikhi. Modeling of a DC glow discharge in a neon-xenon gas mixture at low pressure and with metastable atom densities. Plasma Sci. Tech. 19, 095403 (2017).

https://doi.org/10.1088/2058-6272/aa74ad

Y. Lin, R.A. Adomaitis. Simulation and model reduction methods for an RF plasma glow discharge. J. Comp. Phys. 171, 731 (2001).

https://doi.org/10.1006/jcph.2001.6808

D. Loffhagen, M.M. Becker, A.K. Czerny, J. Philipp, C. Klages. Impact of hexamethyldisiloxane admixtures on the discharge characteristics of a dielectric barrier discharge in argon for thin film deposition. Contrib. Plasma Phys. 58, 337 (2018).

https://doi.org/10.1002/ctpp.201700060

S. Ponduri, M.M. Becker, S. Welzel, M.C.M. van de Sanden, D. Loffhagen, R. Engeln. Fluid modelling of CO2 dissociation in a dielectric barrier discharge. J. Appl. Phys. 119, 093301 (2016).

https://doi.org/10.1063/1.4941530

H. Hoft, M. Kettlitz, M.M. Becker, T. Hoder, D. Loffhagen, R. Brandenburg, K.-D. Weltmann. Breakdown characteristics in pulsed-driven dielectric barrier discharges: Influence of the pre-breakdown phase due to volume memory effects. J. Phys. D: Appl. Phys. 47, 465206 (2014).

https://doi.org/10.1088/0022-3727/47/46/465206

E. Eslami, A. Barjasteh, N. Morshedian. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge. Plasma Phys. Rep. 41, 519 (2015).

https://doi.org/10.1134/S1063780X15060021

M. M. Becker, T. Hoder, R. Brandenburg, D. Loffhagen. Analysis of microdischarges in asymmetric dielectric barrier discharges in argon. J. Phys. D: Appl. Phys. 46, 355203 (2013).

https://doi.org/10.1088/0022-3727/46/35/355203

T. Samir, Y. Liu, L.-L. Zhao. Study on effect of neutral gas pressure on plasma characteristics in capacitive RF argon glow discharges at low pressure by fluid modeling. IEEE Trans. Plasma Sci. 46, 1738 (2018).

https://doi.org/10.1109/TPS.2018.2818164

Q. Liu, Y. Liu, T. Samir, Z. Ma. Numerical study of effect of secondary electron emission on discharge characteristics in low pressure capacitive RF argon discharge. Phys. Plasmas 21, 083511 (2014).

https://doi.org/10.1063/1.4894223

M.M. Becker, H. K¨ahlert, A. Sun, M. Bonitz, D. Loffhagen. Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges. Plasma Sources Sci. Tech. 26, 044001 (2017).

https://doi.org/10.1088/1361-6595/aa5cce

A. Barjasteh, E. Eslami. Numerical investigation of effect of driving voltage pulse on low pressure 90%Ar-10%Cl2 dielectric barrier discharge. Plasma Chem. Plasma Process 38, 261 (2018).

https://doi.org/10.1007/s11090-017-9849-z

A. Barjasteh, E. Eslami, N. Morshedian. Experimental investigation and numerical modeling of the effect of voltage parameters on the characteristics of low-pressure argon dielectric barrier discharges. Phys. of Plasmas 22, 073508 (2015).

https://doi.org/10.1063/1.4926511

N.B. Kolokolov, A.A. Kudrjavtsev, A.B. Blagoev. Interaction processes with creation of fast electrons in the low temperature plasma. Phys. Scri. 50, 371 (1994).

https://doi.org/10.1088/0031-8949/50/4/010

E.W. Pike. On the mean lifetime of metastable neon atoms. Phys. Rev. 49, 513 (1936).

https://doi.org/10.1103/PhysRev.49.513

G.J.M. Hagelaar, L.C. Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Tech. 14, 722 (2005).

https://doi.org/10.1088/0963-0252/14/4/011

http://nl.lxcat.net/home/

L. Vriens, A.H.M. Smeets. Cross-section and rate formulas for electron-impact ionization, excitation, deexcitation, and total depopulation of excited atoms. Phys. Rev. A 22, 940 (1980).

https://doi.org/10.1103/PhysRevA.22.940

W.V. Gaens, A. Bogaerts. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J. Phys. D Appl. Phys. 47, 079502 (2014).

https://doi.org/10.1088/0022-3727/47/7/079502

A. Bouchikhi, A. Hamid. 2D DC subnormal glow discharge in argon. Plasma Sci. Tech. 12, 59 (2010).

https://doi.org/10.1088/1009-0630/12/1/13

A. Bouchikhi. Two-dimensional numerical simulation of the DC glow discharge in the normal mode and with Einstein's relation of electron diffusivity. Plasma Sci. Tech. 14, 965 (2012).

https://doi.org/10.1088/1009-0630/14/11/04

G.J.M. Hagelaar, G.M.W. Kroesen, U. van Slooten, H. Schreuders. Modeling of the microdischarges in plasma addressed liquid crystal displays. J. Appl. Phys. 88, 2252 (2000).

https://doi.org/10.1063/1.1287529

V.E. Golant, A.P. Zilinskij, I.E. Sacharov, S.C. Brown. Fundamentals of Plasma Physics (Wiley, 1980).

D.L. Scharfetter, H.K. Gummel. Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. 16, 64 (1969).

https://doi.org/10.1109/T-ED.1969.16566

A. Bouchikhi. Proposition of a new geometry of the electrodes in a particular discharge. Indian J. Phys. 94, 353 (2020).

https://doi.org/10.1007/s12648-019-01452-4

A. Bouchikhi. Parametric study on the DC microdischarge in a 90%helium-10%xenon gas mixture at intermediate pressure. Indian J. Phys. 96, 1443 (2022).

https://doi.org/10.1007/s12648-021-02070-9

L.S. Frost. Effect of Variable ionic mobility on ambipolar diffusion. Phys. Rev. 105, 354 (1957).

https://doi.org/10.1103/PhysRev.105.354

Ph. Belenguer, J.P. Boeuf. Transition between different regimes of rf glow discharges. Phys. Rev. A 41, 4447 (1990).

https://doi.org/10.1103/PhysRevA.41.4447

V. Lisovskiy, V. Yegorenkov, E. Artushenko, J-P. Booth, S. Martins, K. Landry, D. Douai, V. Cassagne. Normal regime of the weak-current mode of an rf capacitive discharge. Plasma Sources Sci. Tech. 22, 015018 (2013).

https://doi.org/10.1088/0963-0252/22/1/015018

S.K. Park, D.J. Economou. Parametric study of a radiofrequency glow discharge using a continuum model. J. Appl. Phys. 68, 4888 (1990).

https://doi.org/10.1063/1.346122

M. Meyyappan, T.R. Govindan. Radio frequency discharge modeling: Moment equations approach. J. Appl. Phys. 74, 2250 (1993).

https://doi.org/10.1063/1.354708

S.W. Hwang, H.-J. Lee, H.J. Lee. Effect of electron Monte Carlo collisions on a hybrid simulation of a low-pressure capacitively coupled plasma. Plasma Sources Sci. Tech. 23, 065040 (2014).

https://doi.org/10.1088/0963-0252/23/6/065040

M. Surendra, D. Vender. Collisionless electron heating by radio-frequency plasma sheaths. Appl. Phys. Lett. 65, 153 (1994).

https://doi.org/10.1063/1.112656

M. Surendra, D. Graves, L. Plano. Self consistent dc glow - discharge simulations applied to diamond film deposition reactors. J. Appl. Phys. 71, 5189 (1992).

https://doi.org/10.1063/1.350575

Downloads

Опубліковано

2022-11-26

Як цитувати

Bouchikhi, A. (2022). Дослідження розряду крізь діелектричний неоновий бар’єр з деякою густиною метастабільних атомів при низькому тиску на ємнісно залежній радіочастоті: вплив тиску. Український фізичний журнал, 67(7), 504. https://doi.org/10.15407/ujpe67.7.504

Номер

Розділ

Фізика плазми