Effect of Atomic Substitutions on the Electronic Structure of Pt1 – xNixMnSb Alloys (x = 0.0–1.0)

Authors

  • V.N. Uvarov G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. Sci. of Ukraine
  • N.V. Uvarov G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. Sci. of Ukraine
  • V.V. Zagorodnii G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. Sci. of Ukraine, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Physics and Technology
  • A.S. Kruk National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Physics and Technology

DOI:

https://doi.org/10.15407/ujpe67.5.327

Keywords:

bandstructure calculations, Heusler alloys, bandstructure, magnetic moments, polarized bandstructure state, spintronics

Abstract

Using zone calculations in the FLAPW (the full-potential linearized augmented-plane-waves) model, the information on the energy, charge, and spin characteristics of Pt1-xNixMnSb alloys (x = 0.0÷1.0) is obtained. It is established that, with an increase in the concentration of nickel atoms in Pt1-xNixMnSb alloys, the interatomic space density of electrons decreases, covalent bonds weaken, and the cohesive energies of the alloys decrease. The dominant contributions to the formation of magnetic moments in Pt1-xNixMnSb alloys are made by 3d electrons of manganese atoms. In alloys with x ≥ 0.50, the complete polarization of Fermi electrons is registered, which converts these alloys to a half-metallic state.

References

G.E. Bacon, J.S. Plant. Chemical ordering in Heusler alloys with the general formula A2BC or ABC. J. PhyS. F: Metal Phys. 1, 524 (1971).

https://doi.org/10.1088/0305-4608/1/4/325

T. Graf, C. Felser, S.S.P. Parkin. Simple rules for the understanding of Heusler compounds. Progress in Solid State Chemistry 39, 1 (2011).

https://doi.org/10.1016/j.progsolidstchem.2011.02.001

I. Galanakis, P.H. Dederichs, N. Papanikolaou. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. e-print arXiv:cond-mat/0203534v3 19 Jul 2002, p. 1.

C. Felser, G.H. Fecher, B. Balke. Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668 (2007).

https://doi.org/10.1002/anie.200601815

I. Galanakis, P.H. Dederichs. Half-metallicity and slaterpauling behavior in the ferromagnetic Heusler alloys. Lect. Notes Phys. 676, 1 (2005).

https://doi.org/10.1007/11506256_1

R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983).

https://doi.org/10.1103/PhysRevLett.50.2024

I. Galanakis, Ph. Mavropoulos, P.H. Dederichs. Introduction to half-metallic Heusler alloys: Electronic structure and magnetic properties. e-print https://arxiv.org/abs/cond-mat/0510276 11 Oct 2005, p.1.

I. Galanakis, Ph. Mavropoulos. Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles. J. Phys.: Condens. Matter 19, 1 (2007).

https://doi.org/10.1088/0953-8984/19/31/315213

P.G. van Engen, K.H.J. Buschow, R. Jongebreur, M. Erman. PtMnSb, a material with very high magneto-optical Kerr effect. Appl. Phys. Lett. 42, 202 (1983).

https://doi.org/10.1063/1.93849

P.G. van Engelen, D.B. de Mooij, J.H. Wijngaard, K.H.J. Buschow. Magneto-optical and magnetic properties of some solid solutions of Clb-Heusler compounds. J. Magnet. Magnetic Mater. 130, 247 (1994).

https://doi.org/10.1016/0304-8853(94)90680-7

H. Masumoto, K. Watanabe. Magnetic properties of Clb-type pseudo-ternary intermetallic compounds Pt1−xAuxMnSb. Trans. JIM 17, 588 (1976).

https://doi.org/10.2320/matertrans1960.17.588

M.J. Otto, R.A.M. van Woerden, P.J. van der Valk, J. Wijngaard. Half-metallic ferromagnets. I. structure and magnetic properties of NiMnSb and related inter-metallic compounds. J. Phys.: Condens. Matter 1, 2341 (1989).

https://doi.org/10.1088/0953-8984/1/13/007

V.N. Uvarov, N.V. Uvarov, S.A. Bespalov. Distribution of atoms on crystallographic positions in Heusler alloys MMnSb (M = Co, Ni, Cu) and their electronic structure. Metallofiz. novejshie tehnol. 38 (3), 305 (2016).

https://doi.org/10.15407/mfint.39.03.0309

V.N. Uvarov, N.V. Uvarov, S.A. Bespalov, M.V. Nemoshkalenko, atomic disordering and electron band structure in the Heusler alloy CoTiSb. Ukr. J. Phys. 62 (2), 106 (2017).

https://doi.org/10.15407/ujpe62.02.0106

D. Singh. Plane Waves, Psedopotentials and LAPW Method (Kluwer Academic, 1994) [ISBN: 978-1-4757-2312-0].

J.P. Perdew, S. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

P. Blaha, K. Schwarz, G.K. Madsen et al. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universitet, 2001) [ISBN 3-9501031-1-2].

http://www.wien2k.at/reg_user/faq.

B.R.K. Nanda, I. Dasgupta. Electronic structure and magnetism in half-Heusler compounds. J. Phys.: Condens. Matter 15, 7307 (2003).

https://doi.org/10.1088/0953-8984/15/43/014

V.N. Uvarov, N.V. Uvarov. Distribution of atoms on crystallographic positions in Heusler alloys MMnSb (M = Co, Ni, Cu) and their electronic structure. Metallofiz. novejshie tehnol. 39 (3), 309 (2017).

https://doi.org/10.15407/mfint.39.03.0309

J.N. Murrell, S.F.A. Kettle, J.M. Tedder. Teoriya valentnosti (Mir, 1968).

B.L. Aleksandrov, M.B. Rodchenko. Patent RF RU2273058C1 (27.03.2006, Bull. 9).

Downloads

Published

2022-08-29

How to Cite

Uvarov, V., Uvarov, N., Zagorodnii, V., & Kruk, A. (2022). Effect of Atomic Substitutions on the Electronic Structure of Pt1 – xNixMnSb Alloys (x = 0.0–1.0). Ukrainian Journal of Physics, 67(5), 327. https://doi.org/10.15407/ujpe67.5.327

Issue

Section

Fields and elementary particles