Контрольована агрегація плазмонних наночастинок для підвищення ефективності SERS-підкладок

Автор(и)

  • V.M. Dzhagan V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • Ya.V. Pirko Institute of Food Biotechnology and Genomics, Nat. Acad. of Sci. of Ukraine
  • A.Yu. Buziashvili Institute of Food Biotechnology and Genomics, Nat. Acad. of Sci. of Ukraine
  • S.G. Plokhovska Institute of Food Biotechnology and Genomics, Nat. Acad. of Sci. of Ukraine
  • M.M. Borova Institute of Food Biotechnology and Genomics, Nat. Acad. of Sci. of Ukraine
  • A.I. Yemets Institute of Food Biotechnology and Genomics, Nat. Acad. of Sci. of Ukraine
  • N.V. Mazur V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • O.A. Kapush V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V.O. Yukhymchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.1.80

Ключові слова:

SERS-пiдкладки, раманiвська спектроскопiя, R6G, бiомолекули

Анотація

У роботi продемонстровано можливiсть створення унiверсальних та ефективних SERS-пiдкладок шляхом контрольованої агрегацiї колоїдних наночастинок (НЧ) золота та срiбла на пiдкладках зi спецiально розробленою морфологiєю поверхнi. На вiдмiну вiд бiльшостi попереднiх робiт по розробцi та дослiдженню SERS-пiдкладок, в яких пiдсилення реалiзується переважно на оремих НЧ чи наноострiвцях, перехiд до багаторiвневого структурування пiдкладки та керованої агрегацiї осаджених на неї колоїдних плазмонних НЧ суттєво збiльшує ймовiрнiсть утворення “гарячих точок”, а також потрапляння в них молекул аналiту. Ефективнiсть запропонованого пiдходу продемонстрована на кiлькох органiчних аналiтах рiзного типу, зокрема, барвнику R6G, амiнокислотi цистеїн та антитiлах E. coli.

Посилання

J.A. Huang, M.Z. Mousavi, G. Giovannini, Y. Zhao, A. Hubarevich, M.A. Soler, W. Rocchia, D. Garoli, F. De Angelis. Multiplexed discrimination of single amino acid residues in polypeptides in a single SERS hot spot. Angew. Chem. Int. Edit. 59, 11423 (2020).

https://doi.org/10.1002/anie.202000489

A. Szaniawska, A. Kudelski. Applications of surfaceenhanced Raman scattering in biochemical and medical analysis. Front. Chem. 9, 664134 (2021).

https://doi.org/10.3389/fchem.2021.664134

C. Zong, M. Xu, L. Xu, T. Wei, X. Ma, X. Zheng, R. Hu, B. Ren. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 118, 4946 (2018).

https://doi.org/10.1021/acs.chemrev.7b00668

A. Muravitskaya, A. Rumyantseva, S. Kostcheev, V. Dzhagan, O. Stroyuk, P.-M. Adam. Enhanced Raman scattering of ZnO nanocrystals in the vicinity of gold and silver nanostructured surfaces. Opt. Express 24, A168 (2016).

https://doi.org/10.1364/OE.24.00A168

I. Mukha, O. Chepurna, N. Vityuk, A. Khodko, L. Storozhuk, V. Dzhagan, D.R.T. Zahn, V. Ntziachristos, A. Chmyrov, T.Y. Ohulchanskyy. Multifunctional magneto-plasmonic Fe3O4/Au nanocomposites: Approaching magnetophoretically-enhanced photothermal therapy. Nanomaterials 11, 1113 (2021).

https://doi.org/10.3390/nano11051113

M. Borovaya, I. Horiunova, S. Plokhovska, N. Pushkarova, Y. Blume, A. Yemets. Synthesis, properties and bioimaging applications of silver-based quantum dots. Int. J. Mol. Sci. 22, 12202 (2021).

https://doi.org/10.3390/ijms222212202

K. Vus, U. Tarabara, I. Danylenko, Y. Pirko, T. Krupodorova, A. Yemets, Y. Blume, V. Turchenko, D. Klymchuk, P. Smertenko, O. Zhytniakivska, V. Trusova, S. Petrushenko, S. Bogatyrenko, G. Gorbenko. Silver nanoparticles as inhibitors of insulin amyloid formation: A fluorescence study. J. Mol. Liq. 342, 117508 (2021).

https://doi.org/10.1016/j.molliq.2021.117508

E.V. Klyachkovskaya, N.D. Strekal, I.G. Motevich, S.V. Vashchenko, M.Y. Valakh, A.N. Gorbacheva, M.V. Belkov, S.V. Gaponenko. Enhancement of Raman scattering by ultramarine using silver films on surface of germanium quantum dots on silicon. Opt. Spectrosc. 110, 48 (2011).

https://doi.org/10.1134/S0030400X11010085

O.L. Stroyuk, V.M. Dzhagan, A.V. Kozytskiy, A.Y. Breslavskiy, S.Y. Kuchmiy, A. Villabona, D.R.T. Zahn. Nanocrystalline TiO2/Au films: Photocatalytic deposition of gold nanocrystals and plasmonic enhancement of Raman scattering from titania. Mater. Sci. Semicond. Process. 37, 1 (2015).

https://doi.org/10.1016/j.mssp.2014.12.033

V.O. Yukhymchuk, S.A. Kostyukevych, V.M. Dzhagan, A.G. Milekhin. SERS of Rhodamine 6G on substrates with laterally ordered and random gold nanoislands. Semicond. Phys. Quant. Electron. Optoelectron. 15, 232 (2012).

https://doi.org/10.15407/spqeo15.03.232

O.A. Yeshchenko, V.Y. Kudrya, A.V. Tomchuk, I.M. Dmitruk, N.I. Berezovska, P.O. Teselko, S. Golovynskyi, B. Xue, J. Qu. Plasmonic nanocavity metasurface based on laser-structured silver surface and silver nanoprisms for the enhancement of adenosine nucleotide photoluminescence. ACS Appl. Nano Mater. 2, 7152 (2019).

https://doi.org/10.1021/acsanm.9b01673

B.-H. Jun, G. Kim, M.S. Noh, H. Kang, Y.-K. Kim, M.-H. Cho, D.H. Jeong, Y.-S. Lee. Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays. Nanomedicine 6, 1463 (2011).

https://doi.org/10.2217/nnm.11.123

M. Rahaman, A.G. Milekhin, A. Mukherjee, E.E. Rodyakina, A.V. Latyshev, V.M. Dzhagan, D.R.T. Zahn. The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering. Faraday Discuss. 214, 309 (2019).

https://doi.org/10.1039/C8FD00142A

V.O. Yukhymchuk, O.M. Hreshchuk, V.M. Dzhagan, N.A. Matveevskaya, T.G. Beynik, M.Y. Valakh, M.V. Sakhno, M.A. Skoryk, S.R. Lavoryk, G.Y. Rudko, N.A. Matveevskaya, T.G. Beynik, M.Y. Valakh. Experimental studies and modeling of "starlike" plasmonic nanostructures for SERS application. Phys. Status Solidi B 256, 1800280 (2019).

https://doi.org/10.1002/pssb.201800280

O.M. Hreshchuk, V.O. Yukhymchuk, V.M. Dzhagan, V.A. Danko, V.I. Min, I.Z. Indutnyi. Optics efficient SERS substrates based on laterally ordered gold nanostructures made using interference lithography. Semicond. Phys. Quant. Electron. Optoelectron. 22, 215 (2019).

https://doi.org/10.15407/spqeo22.02.215

O.S. Kulakovich, D.V. Korbutyak, S.M. Kalytchuk, S.I. Budzulyak, O.A. Kapush, L.I. Trishchuk, S.V. Vaschenko, V.V. Stankevich, A.A. Ramanenka. Influence of conditions for synthesis of CdTe nanocrystals on their photoluminescence properties and plasmon effects. J. Appl. Spectrosc. 79, 774 (2012).

https://doi.org/10.1007/s10812-012-9668-1

I. Dmitruk, I., Blonskiy, I. Pavlov, O. Yeshchenko, A. Alexeenko, A. Dmytruk, P. Korenyuk, V. Kadan. Surface plasmon as a probe of local field enhancement. Plasmonics 4, 115 (2009).

https://doi.org/10.1007/s11468-009-9081-7

X. Wang, S. Huang, S. Hu, S. Yan, B. Ren. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2, 253 (2020).

https://doi.org/10.1038/s42254-020-0171-y

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J.P. Hill, K. Ariga. Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate. J. Phys. Chem. C 116, 2683 (2012).

https://doi.org/10.1021/jp209251y

N.G. Bast's, J. Comenge, V. Puntes. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir 27, 11098 (2011).

https://doi.org/10.1021/la201938u

Y.L. Mikhlin, S.A. Vorobyev, S.V. Saikova, E.A. Vishnyakova, A.S. Romanchenko, S.M. Zharkov, Y.V. Larichev. On the nature of citrate-derived surface species on Ag nanoparticles: Insights from X-ray photoelectron spectroscopy. Appl. Surf. Sci. 427, 687 (2018).

https://doi.org/10.1016/j.apsusc.2017.09.026

S.D. Iancu, A. Stefancu, V. Moisoiu, L.F. Leopold, N. Leopold. The role of Ag+, Ca2+, Pb2+ and Al3+ adions in

the SERS turn-on effect of anionic analytes. Beilstein J. Nanotechnol. 10, 2338 (2019).

https://doi.org/10.3762/bjnano.10.224

N. Leopold, A. Stefancu, K. Herman, I.S. T'odor, S.D. Iancu, V. Moisoiu, L.F. Leopold. The role of adatoms in chloride-activated colloidal silver nanoparticles for surfaceenhanced Raman scattering enhancement. Beilstein J. Nanotechnol. 9, 2236 (2018).

https://doi.org/10.3762/bjnano.9.208

Y. Maruyama, M. Futamata. Anion induced SERS activation and quenching for R6G adsorbed on Ag nanoparticles. Chem. Phys. Lett. 448, 93 (2007).

https://doi.org/10.1016/j.cplett.2007.09.056

A. Jaworska, T. Wojcik, K. Malek, U. Kwolek, M. Kepczynski, A.A. Ansary, S. Chlopicki, M. Baranska. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim. Acta 182, 119 (2015). https://doi.org/10.1007/s00604-014-1307-5

N.R. Yaffe, E.W. Blanch. Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylaminereduced and citrate-reduced silver colloids. Vib. Spectrosc. 48, 196 (2008). https://doi.org/10.1016/j.vibspec.2007.12.002

S.L. Kleinman, R.R. Frontiera, A.-I. Henry, J.A. Dieringer, R.P. Van Duyne. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21 (2013). https://doi.org/10.1039/C2CP42598J

Опубліковано

2022-02-11

Як цитувати

Dzhagan, V., Pirko, Y., Buziashvili, A., Plokhovska, S., Borova, M., Yemets, A., Mazur, N., Kapush, O., & Yukhymchuk, V. (2022). Контрольована агрегація плазмонних наночастинок для підвищення ефективності SERS-підкладок. Український фізичний журнал, 67(1), 80. https://doi.org/10.15407/ujpe67.1.80

Номер

Розділ

Напівпровідники і діелектрики

Статті цього автора (авторів), які найбільше читають