Екстенсивні/неекстенсивні статистики для pT розподілів різних заряджених частинок, народжених у p + p та A + A зіткненнях у широкому діапазоні енергій
DOI:
https://doi.org/10.15407/ujpe67.6.393Ключові слова:
неекстенсивна термодинамiчна узгодженiсть, загальна (не)екстенсивна статистика, статистики Больцмана i Фермi–ДiракаАнотація
Представлено вичерпний огляд експериментальних параметризацiй, запропонованих для опису розподiлiв поперечного iмпульсу заряджених пiонiв, каонiв та протонiв, що народжуються в дiапазонi енергiї вiд 7,7 ГеВ до 2,76 ТеВ. Дослiджено статистичнi пiдгонки з екстенсивною статистикою Максвела–Больцмана (МБ) або неекстенсивною (загальною аксiоматичною статистикою i окремо статистикою Цаллiса). Обговорюється питання невiдповiдностi мiж тим, що розподiл МБ описує хiмiчний фрiзаут, тодi як статистика Цаллiса – кiнетичний фрiзаут. Залежностi параметрiв пiдгонки вiд енергiї суттєво рiзнi для рiзних типiв частинок I рiзного ступеня (не)екстенсивностi. Це проявляється в тому, що неекстенсивний пiдхiд Цаллiса є бiльш придатним для p + p, нiж для A + A зiткнень. Хоча обговорення бiльш глибокого фiзичного змiсту неекстенсивних статистичних пiдходiв не є нашою метою, ми надаємо повну картину використання статистики Цаллiса в моделюваннi розподiлiв поперечних iмпульсiв кiлькох заряджених частинок, що утворюються в широкому дiапазонi енергiй, i висловлюємо критику чи пiдтримку вiдповiдних робiт.
Посилання
A.N. Tawfik. Equilibrium statistical-thermal models in high-energy physics. Int. J. Mod. Phys. A 29, 1430021 (2014).
https://doi.org/10.1142/S0217751X1430021X
A.N. Tawfik. Koppe's work of 1948: A fundamental for non-equilibrium rate of particle production. Z. Naturforsch. A 69, 106 (2014).
https://doi.org/10.5560/zna.2013-0077
E. Fermi. High energy nuclear events. Prog. Theor. Phys. 5, 570 (1950).
https://doi.org/10.1143/ptp/5.4.570
E. Fermi, T. Appelquist. Elementary Particles (Yale University Press, 1951).
V.B. Magalinskii, I.P. Terletskii. The application of the microcanonical distribution to the statistical theory of multiple production of particles. J. Exp. Theor. Phys. 5, 483 (1957).
G. Fast, R. Hagedorn. Large-angle elastic scattering at high energies treated by a statistical model. Nuono Cimento 27, 208 (1963).
https://doi.org/10.1007/BF02812614
G. Fast, R. Hagedorn, L.W. Jones. A statistical interpretation of large-angle elastic scattering. Nuovo Cimento 27, 856.
https://doi.org/10.1007/BF02783273
C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Statist. Phys. 52, 479 (1988).
https://doi.org/10.1007/BF01016429
I. Bediaga, E.M.F. Curado, J.M. de Miranda. A nonextensive thermodynamical equilibrium approach in e+e− → hadrons. Physica A 286, 156 (2000).
https://doi.org/10.1016/S0378-4371(00)00368-X
A.S. Parvan, O.V. Teryaev, J. Cleymans. Systematic comparison of Tsallis statistics for charged pions produced in pp collisions. Eur. Phys. J. A 53, 102 (2017).
https://doi.org/10.1140/epja/i2017-12301-y
C. Beck. Non-extensive statistical mechanics and particle spectra in elementary interactions. Physica A 286, 164 (2000).
https://doi.org/10.1016/S0378-4371(00)00354-X
G. Wilk, Z. Wlodarczyk. Interpretation of the nonextensitivity parameter q in some applications of Tsallis statistics and L'evy distributions. Phys. Rev. Lett. 84, 2770 (2000).
https://doi.org/10.1103/PhysRevLett.84.2770
D.B. Walton, J. Rafelski. Equilibrium distribution of heavy quarks in Fokker-Planck dynamics. Phys. Rev. Lett. 84, 31 (2000).
https://doi.org/10.1103/PhysRevLett.84.31
W.M. Alberico, A. Lavagno, P. Quarati. Non-extensive statistics effects in quark-gluon plasma and in relativistic heavy-ion collisions. Nucl. Phys. A 680, 94 (2000).
https://doi.org/10.1016/S0375-9474(00)00396-1
J. Zim'anyi, P. L'evai, T.S. Bir'o. Properties of quark matter produced in heavy-ion collision. J. Phys. G 31, 711 (2005).
https://doi.org/10.1088/0954-3899/31/7/016
T.A. Trainor. Centrality evolution of pt and yt spectra from Au-Au collisions at √SNN = 200 GeV. Int. J. Mod. Phys. E 17, 1499 (2008).
https://doi.org/10.1142/S021830130801057X
G. Wilk, Z. Wlodarczyk. Power laws in elementary and heavy-ion collisions. Eur. Phys. J. A 40, 299 (2009).
https://doi.org/10.1140/epja/i2009-10803-9
T.S. Bir'o, K. Urm¨ossy. Transverse hadron spectra from a ¨ stringy quark matter. J. Phys. G 36, 064044 (2009).
https://doi.org/10.1088/0954-3899/36/6/064044
Q.A. Wong. Extensive generalization of statistical mechanics based on incomplete information theory. Entropy 5, 220 (2003).
https://doi.org/10.3390/e5020220
S. Tripathy, T. Bhattacharyya, P. Garg, P. Kumar, R. Sahoo, J. Cleymans. Nuclear modification factor using Tsallis non-extensive statistics. Eur. Phys. J. A 52, 289 (2016).
https://doi.org/10.1140/epja/i2016-16289-4
A. Khuntia, P. Sahoo, P. Garg, R. Sahoo, J. Cleymans. Speed of sound in hadronic matter using non-extensive Tsallis statistics. Eur. Phys. J. A 52, 292 (2016).
https://doi.org/10.1140/epja/i2016-16292-9
T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek, R. Sahoo. Radial flow in non-extensive thermodynamics and study of particle spectra at LHC in the limit of small (q − 1). Eur. Phys. J. A 52, 30 (2016).
https://doi.org/10.1140/epja/i2016-16030-5
A. Deppman. Properties of hadronic systems according to the nonextensive self-consistent thermodynamics. J. Phys. G 41, 055108 (2014).
https://doi.org/10.1088/0954-3899/41/5/055108
W.M. Alberico, P. Czerski, A. Lavagno, M. Nardi, V. Som'a. Signals of non-extensive statistical mechanics in high energy nuclear collisions. Physica A 387, 467 (2008).
https://doi.org/10.1016/j.physa.2007.09.005
A.N. Tawfik. Axiomatic nonextensive statistics at NICA energies. Eur. Phys. J. A 52, 253 (2016).
https://doi.org/10.1140/epja/i2016-16253-4
S. Thurner, R. Hanel. Peer-review in a world with rational scientists: Toward selection of the average. Eur. Phys. J. B 84, 707 (2011).
https://doi.org/10.1140/epjb/e2011-20545-7
A.N. Tawfik, H. Yassin, E.R. Abo Elyazeed. On thermodynamic self-consistency of generic axiomatic-nonextensive statistics. Chin. Phys. C 41, 053107 (2017).
https://doi.org/10.1088/1674-1137/41/5/053107
V.F. Weisskopf. Statistics and nuclear reactions. Phys. Rev. 52, 295 (1937).
https://doi.org/10.1103/PhysRev.52.295
S. Cheng, S. Pratt, P. Csizmadia, Y. Nara, D. Moln'ar, M. Gyulassy, S.E. Vance, B. Zhang. Effect of finite-range interactions in classical transport theory. Phys. Rev. C 65, 024901 (2002).
https://doi.org/10.1103/PhysRevC.65.024901
A. Tounsi, K. Redlich. Canonical constraints on particle production. J. Phys. G 28, 2095 (2002).
https://doi.org/10.1088/0954-3899/28/7/378
K. Kassner. Why ghosts don't touch: a tale of two adventurers falling one after another into a black hole. Eur. J. Phys. 38, 015605 (2017).
https://doi.org/10.1088/0143-0807/38/1/015605
H. Zheng, L. Zhu. Comparing the Tsallis distribution with and without thermodynamical description in p + p collisions. Adv. High Energy Phys. 2016, 9632126 (2016).
https://doi.org/10.1155/2016/9632126
Y.-Q. Gao, F.-H. Liu. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data. Indian J. Phys. 90, 319 (2016).
https://doi.org/10.1007/s12648-015-0747-z
H. Zheng, L. Zhu. Can Tsallis distribution fit all the particle spectra produced at RHIC and LHC? Adv. High Energy Phys. 2015, 180491 (2015).
https://doi.org/10.1155/2015/180491
H. Zheng, L. Zhu, A. Bonasera. Systematic analysis of hadron spectra in p + p collisions using Tsallis distributions. Phys. Rev. D 92, 074009 (2015).
https://doi.org/10.1103/PhysRevD.92.074009
G. Wilk, Z. Wlodarczyk. Tsallis distribution decorated with log-periodic oscillation. Entropy 17, 384 (2015).
https://doi.org/10.3390/e17010384
L. Marques, J. Cleymans, A. Deppman. Description of high-energy pp collisions using Tsallis thermodynamics: Transverse momentum and rapidity distributions. Phys. Rev. D 91, 054025 (2015).
https://doi.org/10.1103/PhysRevD.91.054025
K. Urmossy, G.G. Barnaf¨oldi, S. Harangoz'o, T.S. Bir'o, Z. Xu. A 'soft + hard' model for heavy-ion collisions. J. Phys. Conf. Ser. 805, 012010 (2017).
https://doi.org/10.1088/1742-6596/805/1/012010
J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku. Systematic properties of the Tsallis distribution: Energy dependence of parameters in high energy collisions. Phys. Lett. B 723, 351 (2013).
https://doi.org/10.1016/j.physletb.2013.05.029
M. Rybczy'nski, Z. Wlodarczyk. Tsallis statistics approach to the transverse momentum distributions in p-p collisions. Eur. Phys. J. C 74, 2785 (2014).
https://doi.org/10.1140/epjc/s10052-014-2785-7
A. Deppman. Self-consistency in non-extensive thermodynamics of highly excited hadronic states. Physica A 391, 6380 (2012).
https://doi.org/10.1016/j.physa.2012.07.071
M. Kataja, P.V. Ruuskanen. Non-zero chemical potential and the shape of the pT -distribution of hadrons in heavyion collisions. Phys. Lett. B 243, 181 (1990).
https://doi.org/10.1016/0370-2693(90)90836-U
S. Turbide, R. Rapp, C. Gale. Hadronic production of thermal photons. Phys. Rev. C 69, 014903 (2004).
https://doi.org/10.1103/PhysRevC.69.014903
A. Banerjee, V.M. Yakovenko. Universal patterns of inequality. New J. Phys. 12, 075032 (2010).
https://doi.org/10.1088/1367-2630/12/7/075032
P.K. Khandai, P. Sett, P. Shukla, V. Singh. Hadron spectra in p + p collisions at RHIC and LHC energies. Int. J. Mod. Phys. A 28, 1350066 (2013).
https://doi.org/10.1142/S0217751X13500668
K. Saraswat, P. Shukla, V. Singh. Strange hadron production in pp, pPb and PbPb collisions at LHC energies. European Phys. J. A, 53 (2017).
https://doi.org/10.1140/epja/i2017-12276-7
A.S. Parvan. Comparison of Tsallis statistics with the Tsallis-factorized statistics in the ultrarelativistic pp collisions. Eur. Phys. J. A 52, 355 (2016).
https://doi.org/10.1140/epja/i2016-16355-y
F. B¨uy¨ukili¸c, D. Demirhan, A. G¨ule¸c. A statistical mechanical approach to generalized statistics of quantum and classical gases. Phys. Lett. A 197, 209 (1995).
https://doi.org/10.1016/0375-9601(94)00941-H
J. Stachel, A. Andronic, P. Braun-Munzinger, K. Redlich. Confronting LHC data with the statistical hadronization model. J. Phys. Conf. Ser. 509, 012019 (2014).
https://doi.org/10.1088/1742-6596/509/1/012019
S. Ban-Hao, C.-Y. Wong. Transverse-momentum distribution of produced particles in ultrarelativistic nucleusnucleus collisions. Phys. Rev. D 32, 1706 (1985).
https://doi.org/10.1103/PhysRevD.32.1706
P. Danielewicz, M. Gyulassy. Dissipative phenomena in quark-gluon plasmas. Phys. Rev. D 31, 53 (1985).
https://doi.org/10.1103/PhysRevD.31.53
P.J. Siemens, J.O. Rasmussen. Evidence for a blast wave from compressed nuclear matter. Phys. Rev. Lett. 42, 880 (1979).
https://doi.org/10.1103/PhysRevLett.42.880
G.D. Westfall, J. Gosset, P.J. Johansen, A.M. Poskanzer, W.G. Meyer, H.H. Gutbrod, A. Sandoval, R. Stock. Nuclear fireball model for proton inclusive spectra from relativistic heavy-ion collisions. Phys. Rev. Lett. 37, 1202 (1976).
https://doi.org/10.1103/PhysRevLett.37.1202
E. Schnedermann, J. Sollfrank, U.W. Heinz. Thermal phenomenology of hadrons from 200A GeV S + S collisions. Phys. Rev. C 48, 2462 (1993).
https://doi.org/10.1103/PhysRevC.48.2462
C. Anderlik, Zs.I. L'az'ar, V.K. Magas, L.P. Csernai, H. St¨ocker, W. Greiner. Nonideal particle distributions from kinetic freeze-out models. Phys. Rev. C 59, 388 (1999).
https://doi.org/10.1103/PhysRevC.59.388
I.P. Lokhtin, A.M. Snigirev. A model of transverse expansion of the quark-gluon fluid with phase transition and hadron spectra in heavy ion collisions. Phys. Lett. B 378, 247 (1996).
https://doi.org/10.1016/0370-2693(96)00433-9
T.D. Biro. Is there a temperature: Conceptual Challenges at High Energy, Acceleration and Complexity (SpringerVerlag, 2011).
https://doi.org/10.1007/978-1-4419-8041-0
H.-R. Wei, F.-H. Liu, R.A. Lacey. Kinetic freeze-out temperature and flow velocity extracted from transverse momentum spectra of final-state light flavor particles produced in collisions at RHIC and LHC. Eur. Phys. J. A 52, 102 (2016).
https://doi.org/10.1140/epja/i2016-16102-6
H.-L. Lao, H.-R. Wei, F.-H. Liu, R.A. Lacey. An evidence of mass-dependent differential kinetic freeze-out scenario observed in Pb-Pb collisions at 2.76 TeV. Eur. Phys. J. A 52, 203 (2016).
https://doi.org/10.1140/epja/i2016-16203-2
P. Huovinen, P.V. Ruuskanen. Hydrodynamic models for heavy ion collisions. Ann. Rev. Nucl. Part. Sci. 56, 163 (2006).
https://doi.org/10.1146/annurev.nucl.54.070103.181236
L. Adamczyk et al. (STAR Collaboration). Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 96, 044904 (2017).
B.I. Abelev et al. (STAR Collaboration). Systematic measurements of identified particle spectra in pp, d +Au, and Au + Au collisions at the STAR detector. Phys. Rev. C 79, 034909 (2009).
A. Bialas. Tsallis p⊥ distribution from statistical clusters. Phys. Lett. B 747, 190 (2015).
https://doi.org/10.1016/j.physletb.2015.05.076
M. Gyulassy, I. Vitev, X.-N. Wang, B.-W. Zhang. Jet quenching and radiative energy loss in dense nuclear matter. In: Quark Gluon Plasma. Edited by R.C. Hwa, X.-N. Wang (World Scientific, 2003), pp. 123-191.
https://doi.org/10.1142/9789812795533_0003
D. d'Enterria. Relevance of baseline hard proton-proton spectra for high-energy nucleus-nucleus physics. J. Phys. G 31, S491 (2005).
https://doi.org/10.1088/0954-3899/31/4/061
K. Adcox et al. (PHENIX Collaboration). Suppression of hadrons with large transverse momentum in central Au + Au collisions at √SNN = 130 GeV. Phys. Rev. Lett. 88, 022301 (2002).
C. Adler et al. (STAR Collaboration). Centrality dependence of high-pT hadron suppression in Au + Au collisions at √SNN = 130 GeV. Phys. Rev. Lett. 89, 202301 (2002).
S.S. Adler et al. (PHENIX Collaboration). Suppressed п0 production at large transverse momentum in central Au + Au collisions at √SNN = 200 GeV. Phys. Rev. Lett. 91, 072301 (2003).
J. Adams et al. (STAR Collaboration). Transversemomentum and collision-energy dependence of high-pT hadron suppression in Au + Au collisions at ultrarelativistic energies. Phys. Rev. Lett. 91, 172302 (2003).
B.B. Back, M.D. Baker, D.S. Barton, R.R. Betts, M. Ballintijn, A.A. Bickley, R. Bindel, A. Budzanowski, W. Busza, A. Carroll, M.P. Decowski, N. George, K. Gulbrandsen, S. Gushue, C. Halliwell et al. Charged hadron transverse momentum distributions in Au + Au collisions at √SNN = 200 GeV. Phys. Lett. B 578, 297 (2004).
https://doi.org/10.1016/j.physletb.2003.10.101
I. Arsene et al. (BRAHMS Collaboration). Transversemomentum spectra in Au + Au and d + Au collisions at √SNN = 200 GeV and the pseudorapidity dependence of high-pT suppression. Phys. Rev. Lett. 91, 072305 (2003).
S.S. Adler et al. (PHENIX Collaboration). Midrapidity neutral-pion production in proton-proton collisions at √SNN = 200 GeV. Phys. Rev. Lett. 91, 241803 (2003).
M.M. Aggarwal et al. (WA98 Collaboration). Transverse mass distributions of neutral pions from 208Pb-induced reactions at 158A GeV. Eur. Phys. J. C 23, 225 (2002).
https://doi.org/10.1007/s100520100886
M.M. Aggarwal et al. (WA98 Collaboration). Three-pion interferometry results from central Pb + Pb collisions at 158A GeV/c. Phys. Rev. Lett. 85, 2985 (2000).
M.M. Aggarwal et al. (WA98 Collaboration). Centrality dependence of neutral pion production in 158A GeV 208Pb + 208Pb collisions. Phys. Rev. Lett. 81, 4087 (1998) [Erratum: Phys. Rev. Lett. 84, 578 (2000)].
X.-N. Wang. Where is the jet quenching in Pb + Pb collisions at 158A GeV? Phys. Rev. Lett. 81, 2655 (1998).
https://doi.org/10.1103/PhysRevLett.81.2655
X.-N. Wang. Systematic study of high pT hadron spectra in pp, pA, and AA collisions at ultrarelativistic energies. Phys. Rev. C 61, 064910 (2000).
E. Wang, X.-N. Wang. Interplay of soft and hard processes and hadron pT spectra in pA and AA collisions. Phys. Rev. C 64, 034901 (2001).
J.W. Cronin, H.J. Frisch, M.J. Shochet, J.P. Boymond, P.A. Pirou'e, R.L. Sumner. Production of hadrons at large transverse momentum at 200, 300, and 400 GeV. Phys. Rev. D 11, 3105 (1975).
https://doi.org/10.1103/PhysRevD.11.3105
B.Z. Kopeliovich, J. Nemchik, A. Sch¨afer, A.V. Tarasov. Cronin effect in hadron production off nuclei. Phys. Rev. Lett. 88, 232303 (2002).
https://doi.org/10.1103/PhysRevLett.88.232303
V.N. Gribov, B.L. Ioffe, I.Ya. Pomeranchuk. On the total annihilation cross-section of electron-positron pairs into hadrons at high-energies. Sov. J. Nucl. Phys. 6, 427 (1968) [Phys. Lett. 24B, 554 (1967)].
K. Geiger. Quantum field kinetics of QCD: Quarkgluon transport theory for light-cone-dominated processes. Phys. Rev. D 54, 949 (1996).
https://doi.org/10.1103/PhysRevD.54.949
A. Ayala, J. Jalilian-Marian, L.D. McLerran, R. Venugopalan. Gluon propagator in non-Abelian Weizs¨acker-Williams fields. Phys. Rev. D 52, 2935 (1995).
https://doi.org/10.1103/PhysRevD.52.2935
Z.-T. Liang, X.-N. Wang. Globally polarized quark-gluon plasma in noncentral A + A collisions. Phys. Rev. Lett. 94, 102301 (2005) [Erratum: Phys. Rev. Lett. 96, 039901 (2006)].
https://doi.org/10.1103/PhysRevLett.94.102301
M. Diehl, J.R. Gaunt. Chapter 2: Double parton scattering theory overview. Adv. Ser. Direct. High Energy Phys. 29, 7 (2018).
https://doi.org/10.1142/9789813227767_0002
T. Kasemets, S. Scopetta. Chapter 4: Parton correlations in double parton scattering. Adv. Ser. Direct. High Energy Phys. 29, 49 (2018).
https://doi.org/10.1142/9789813227767_0004
D. Antreasyan, J.W. Cronin, H.J. Frisch, M.J. Shochet, L. Kluberg, P.A. Pirou'e, R.L. Sumner. Production of hadrons at large transverse momentum in 200-, 300-, and 400-GeV p-p and p-nucleus collisions. Phys. Rev. D 19, 764 (1979).
https://doi.org/10.1103/PhysRevD.19.764
P.B. Straub, D.E. Jaffe, H.D. Glass, M.R. Adams, C.N. Brown, G. Charpak, W.E. Cooper, J.A. Crittenden, D.A. Finley, R. Gray, Y. Hemmi, Y.B. Hsiung, J.R. Hubbard, A.M. Jonckheere, H. J¨ostlein et al. Nuclear dependence of high-xt hadron and high-T hadron-pair production in p-A interactions at √s = 38.8 GeV. Phys. Rev. Lett. 68, 452 (1992).
https://doi.org/10.1103/PhysRevLett.68.452
A.L.S. Angelis et al. (BCMOR Collaboration). Large transverse momentum п0 production in αα, dd and pp collisions at the CERN ISR. Phys. Lett. B 185, 213 (1987).
B.B. Abelev et al. (ALICE Collaboration). Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE. Eur. Phys. J. C 73, 2662 (2013).
R. Sassot, P. Zurita, M. Stratmann. Inclusive hadron production in the CERN-LHC era. Phys. Rev. D 82, 074011 (2010).
https://doi.org/10.1103/PhysRevD.82.074011
S. Chatrchyan et al. (CMS Collaboration). Study of the inclusive production of charged pions, kaons, and protons in pp collisions at √s = 0.9, 2.76, and 7 TeV. Eur. Phys. J. C 72, 2164 (2012).
K. Aamodt et al. (ALICE Collaboration). Production of pions, kaons and protons in pp collisions at √s = 900 GeV with ALICE at the LHC. Eur. Phys. J. C 71, 1655 (2011).
V. Khachatryan et al. (CMS Collaboration). Transversemomentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 0.9 and 2.36 TeV. JHEP 02, 041 (2010).
V. Khachatryan et al. (CMS Collaboration). Transversemomentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 7 TeV. Phys. Rev. Lett. 105, 022002 (2010).
J. Adams et al. (STAR Collaboration). K(892)* resonance production in Au + Au and p + p collisions at √sNN = 200 GeV. Phys. Rev. C 71, 064902 (2005).
T.S. Bir'o, G. Purcsel, K. Urm¨ossy. Non-extensive approach to quark matter. Eur. Phys. J. A 40, 325 (2009).
https://doi.org/10.1140/epja/i2009-10806-6
F.-H. Liu. Unified description of multiplicity distributions of final-state particles produced in collisions at high energies. Nucl. Phys. A 810, 159 (2008).
https://doi.org/10.1016/j.nuclphysa.2008.06.014
F.-H. Liu, J.-S. Li. Isotopic production cross section of fragments in 56Fe + p and 136Xe(124Xe) + Pb reactions over an energy range from 300A to 1500A MeV. Phys. Rev. C 78, 044602 (2008).
F.-H. Liu, Y.-Q. Gao, T. Tian, B.-C. Li. Unified description of transverse momentum spectrums contributed by soft and hard processes in high-energy nuclear collisions. Eur. Phys. J. A 50, 94 (2014).
https://doi.org/10.1140/epja/i2014-14094-9
Y.-Q. Gaoa, C.-X. Tiana, F.-H. Liua, M.A. Rahimb, S. Fakhraddin. Transverse momentum distributions of identified particles produced in pp, p(d)A, and AA collisions at high energies. PRAMANA J. phys. 79, 1407 (2012).
https://doi.org/10.1007/s12043-012-0350-1
H.-R. Wei, F.-H. Liu. A study of transverse momentum distributions of jets produced in p-p, p-p¯, d-Au, Au-Au, and Pb-Pb collisions at high energies. Adv. High Energy Phys. 2015, 263135 (2015).
H.-R. Wei, F.-H. Liu, R.A. Lacey. Disentangling random thermal motion of particles and collective expansion of source from transverse momentum spectra in high energy collisions. J. Phys. G 43, 125102 (2016).
https://doi.org/10.1088/0954-3899/43/12/125102
S.S. Adler et al. (PHENIX Collaboration). Identified charged particle spectra and yields in Au + Au collisions at √sNN = 200 GeV. Phys. Rev. C 69, 034909 (2004).
S. Takeuchi, K. Murase, T. Hirano, P. Huovinen, Y. Nara. Effects of hadronic rescattering on multistrange hadrons in high-energy nuclear collisions. Phys. Rev. C 92, 044907 (2015).
https://doi.org/10.1103/PhysRevC.92.044907
H. Heiselberg, A.-M. Levy. Elliptic flow and HanburyBrown-Twiss correlations in noncentral nuclear collisions. Phys. Rev. C 59, 2716 (1999).
https://doi.org/10.1103/PhysRevC.59.2716
U.W. Heinz. Concepts of heavy ion physics. In: Proceedings of 2002 European School of high-energy physics, Pylos, Greece, 25 Aug-7 Sep 2002 (2004), pp. 165-238.
R. Russo. Measurement of D+ meson production in p-Pb collisions with the ALICE detector. PhD thesis (Turin Univer., 2015).
J. Adam et al. (ALICE Collaboration). Measurement of pion, kaon and proton production in proton-proton collisions at √s = 7 TeV. Eur. Phys. J. C 75, 226 (2015).
C. Andrei. Light flavor hadron spectra at low pT and search for collective phenomena in high multiplicity pp, p-Pb and Pb-Pb collisions measured with the ALICE experiment Nucl. Phys. A 931, 888 (2014).
https://doi.org/10.1016/j.nuclphysa.2014.08.002
N. Suzuki, M. Biyajima. Transverse momentum distribution with radial flow in relativistic diffusion model. Int. J. Mod. Phys. E E16, 133 (2007).
https://doi.org/10.1142/S0218301307005582
F.-H. Liu, Y.-Q. Gao, B.C. Li. Comparing two-Boltzmann distribution and Tsallis statistics of particle transverse momentums in collisions at LHC energies. Eur. Phys. J. A 50, 123 (2014).
https://doi.org/10.1140/epja/i2014-14123-9
H. Yassin, E.R. Abo Elyazeed. Transverse momentum pT spectra of strange particles production in different collisions at √sNN = 2.76,5.02, and 7 TeV. Acta Phys. Pol. B 50, 37 (2018).
https://doi.org/10.5506/APhysPolB.50.37
C. Anteneodo, A.R. Plastino. Maximum entropy approach to stretched exponential probability distributions. J. Phys. A: Math. Gen. 32, 1089 (1999).
https://doi.org/10.1088/0305-4470/32/7/002
A.N. Tawfik, H. Yassin, E.R. Abo Elyazeed. Chemical freezeout parameters within generic nonextensive statistics. Indian J. Phys. 92, 1325 (2018).
https://doi.org/10.1007/s12648-018-1216-2
M. Banner et al. (UA2 Collaboration). Inclusive charged particle production at the CERN pp ¯ collider. Phys. Lett. 122B, 322 (1983).
T. Alexopoulos et al. (E735 Collaboration). Massidentified particle production in proton-antiproton collisions at √sNN = 300, 540, 1000, and 1800 GeV. Phys. Rev. D 48, 984 (1993).
A. Adare et al. (PHENIX Collaboration). Identified charged hadron production in p + p collisions at √sNN = 200 and 62.4 GeV. Phys. Rev. C 83, 064903 (2011).
B.I. Abelev et al. (STAR Collaboration). Strange particle production in p + p collisions at √sNN = 200 GeV. Phys. Rev. C 75, 064901 (2007).
B.I. Abelev et al. (STAR Collaboration). Energy dependence of п±, p and p¯ transverse momentum spectra for Au + Au collisions at √sNN = 62.4 and 200 GeV. Phys. Lett. B 655, 104 (2007).
A. Adare et al. (PHENIX Collaboration). Spectra and ratios of identified particles in Au + Au and d+Au collisions at √sNN = 200 GeV. Phys. Rev. C 88, 024906 (2013).
B. Abelev et al. (ALICE Collaboration). Pion, kaon, and proton production in central Pb-Pb collisions at √sNN = 2.76 TeV. Phys. Rev. Lett. 109, 252301 (2012).
P. Sett, P. Shukla. Pion pT spectra in p + p collisions as a function of √s and event multiplicity. Adv. High Energy Phys. 2014, 896037 (2014).
W.M. Alberico, A. Lavagno. Non-extensive statistical effects in high-energy collisions. Eur. Phys. J. A 40, 313 (2009).
https://doi.org/10.1140/epja/i2009-10809-3
J. Adams et al. (STAR Collaboration.) Identified hadron spectra at large transverse momentum in p+p and d+Au collisions at √sNN = 200 GeV. Phys. Lett. B 637, 161 (2006.)
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.