Поляризовність двошарового метал-оксидного нано-дроту

Автор(и)

  • A.V. Korotun Zaporizhzhya National Technical University
  • Ya.V. Karandas Zaporizhzhya National Technical University
  • V.I. Reva Zaporizhzhya National Technical University
  • I.M. Titov UAD Systems

DOI:

https://doi.org/10.15407/ujpe66.10.908

Ключові слова:

метал-оксидний нанодрiт, тензор поляризовностi, перерiз поглинання, перерiз розсiювання, поверхневий плазмон, дiелектрична функцiя, розмiрна залежнiсть

Анотація

В роботi одержано спiввiдношення для частотних залежностей дiйсної й уявної частин та модуля компонентiв тензора поляризовностi, а також перерiзiв поглинання i розсiювання метал-оксидних нанодротiв. Дослiджено граничнi випадки “товстого” I “тонкого” зовнiшнього шару оксиду. Чисельнi розрахунки проведено для дротiв Al, Cu i Ag, вкритих шаром власного оксиду. Розглянуто випадки, коли дiелектрична проникнiсть оксиду є постiйною величиною або є функцiєю частоти. В останньому випадку для визначення цiєї залежностi було використано апроксимацiю експериментальних кривих частотних залежностей показникiв заломлення та екстинкцiї. Проаналiзовано вплив змiни товщини оксидного шару на поведiнку частотних залежностей поляризовностi i перерiзiв поглинання i розсiювання. Встановлено, що наявнiсть оксиду приводить до зменшення частоти поверхневих плазмонiв у двошарових нанодротах внаслiдок впливу класичних розмiрних ефектiв.

Посилання

K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, H. Misawa. Nano-structured materials in plasmonics and photonics. Curr. Nanosci. 4, 232 (2008).

https://doi.org/10.2174/157341308785161046

K. Mitamura, T. Imae. Functionalization of gold nanorods toward their applications. Plasmonics 4, 23 (2009).

https://doi.org/10.1007/s11468-008-9073-z

N. Lawrence, L. Dal Negro. Light scattering, field localization and local density of states in coaxial plasmonic nanowires. Opt. Exp. 18, 16120 (2010).

https://doi.org/10.1364/OE.18.016120

J. Zhu, S. Zhao, J.-W. Zhao, J.-J. Li. Dielectric wall controlled resonance light scattering of coated long gold nanowire. Curr. Nanosci. 7, 377 (2011).

https://doi.org/10.2174/157341311795542480

S.J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A.D. Pris, K.H. An, W.P. Hall, R.A. Potyrailo. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. J. Opt. Soc. Am. A 29, 994 (2012).

https://doi.org/10.1364/JOSAA.29.000994

J. Cao, T. Sun, K.T.V. Grattan. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensor. Actuat. B 195, 332 (2014).

https://doi.org/10.1016/j.snb.2014.01.056

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, H. Xu. Plasmon Waveguiding in nanowires. Chem. Rev. 118, 2882 (2018).

https://doi.org/10.1021/acs.chemrev.7b00441

J. Sun, X. Yu, Z. Li, J. Zhao, P. Zhu, X. Dong, Z. Yu, Z. Zhao, D. Shi, J. Wang, H. Dai. Ultrasonic modification of Ag nanowires and their applications in flexible transparent film heaters and SERS detectors. Materials 12 893 (2019).

https://doi.org/10.3390/ma12060893

U. Schoster, A. Dereus. Surface plasmon-polaritons on metal cylinders with dielectric core. Phys. Rev. B 64, 125420 (2001).

https://doi.org/10.1103/PhysRevB.64.125420

N.I. Grigorchuk, P.M. Tomchuk. Cross-sections of electric and magnetic light absorption by spherical metallic nanoparticles. The exact kinetic solution. Ukr. J. Phys. 51, 921 (2006).

N.I. Grigorchuk. Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix. Europhys. Lett. 97, 45001 (2012).

https://doi.org/10.1209/0295-5075/97/45001

P.M. Tomchuk. Dependence of light scattering crosssection by metal nanoparticles on their shape. Ukr. Fiz. Zh. 57, 553 (2012) (in Ukrainian).

A. Murphy, Y. Sonnefraud, A.V. Krasavin, P. Ginzburg, F. Morgan, J. McPhillips, G. Wurtz, S.A. Maier, A.V. Zayats, R. Pollard. Fabrication and optical properties of largescale arrays of gold nanocavities based on rod-in-a-tube coaxials. Appl. Phys. Lett. 102, 103103 (2013).

https://doi.org/10.1063/1.4794935

D.M. Natarov. Modes of a core-shell silver wire plasmonic nanolaser beyond the Drude formula. J. Optics 16, 075002 (2014).

https://doi.org/10.1088/2040-8978/16/7/075002

A.V. Korotun, A.O. Koval, VV Pogosov. Optical characteristics of bimetallic nanospheres. Ukr. J. Phys. 66, 518. (2021).

https://doi.org/10.15407/ujpe66.6.518

M.L. Brongersma, V.M. Shalaev. The case for plasmonics. Science 328, 440 (2010).

https://doi.org/10.1126/science.1186905

S.A. Maier. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

https://doi.org/10.1007/0-387-37825-1

P. Berini, I. De Leon. Surface plasmon-polariton amplifiers and lasers. Nat. Photon. 6, 16 (2012).

https://doi.org/10.1038/nphoton.2011.285

P.G. Etchegoin. Plasmonics and spectroscopy. Phys. Chem. Chem. Phys. 15, 5261 (2013).

https://doi.org/10.1039/c3cp90034g

E. Stratakis, E. Kymakis. Nanoparticle-based plasmonic organic photovoltaic devices. Mater. Today 16, 133 (2013).

https://doi.org/10.1016/j.mattod.2013.04.006

M.L. Dmytruk, S.Z. Malynych. Surface plasmon resonances and their manifestation in the optical properties of nanostructures of precious metals. Ukr. Fiz. Zh. Ogl. 9, 3 (2014) (in Ukrainian).

Y.M. Morozov, A.S. Lapchuk, M.L. Fu, A.A. Kryuchyn, H.R. Huang, Z.C. Le. Numerical analysis of end-fire coupling of surface plasmon polaritons in a metal-insulatormetal waveguide using a simple photoplastic connector. Photon. Res. 6, 149 (2018).

https://doi.org/10.1364/PRJ.6.000149

V.I. Balykin, P.N. Melentyev. Optics and spectroscopy of a single plasmon nanostructure. Usp. Fiz. Nauk 188, 143 (2018) (in Russian).

https://doi.org/10.3367/UFNr.2017.06.038163

J.M.J. Santill'an, L.B. Scaffardi, D.C. Schinca. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag2O nanoparticle. J. Phys. D 44, 105104 (2011).

https://doi.org/10.1088/0022-3727/44/10/105104

J.M.J. Santill'an, F.A. Videla, M.B. Fern'andez van Raap, D.C. Schinca, L.B. Scaffardi. Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. J. Appl. Phys. 113, 134305 (2013).

https://doi.org/10.1063/1.4798387

A.V. Korotun, A.A. Koval, V.I. Reva. Influence of oxide coating on the electromagnetic radiation absorption by

spherical metal nanoparticles. Zh. Prikl. Spektrosk. 86, 549 (2019) (in Russian).

M. Liu, P. Guyot-Sionnest. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B 108, 5882 (2004).

https://doi.org/10.1021/jp037644o

X.-Y. Gao, H.-L. Feng, J.-M. Ma, Z.-Y. Zhang, J.-X. Lu, Y.-S. Chen, S.-E. Yang, J.-H. Gu. Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-oscillator model. Physica B 405, 1922 (2010).

https://doi.org/10.1016/j.physb.2010.01.076

N.I. Grigorchuk. Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium. J. Opt. Soc. Am. B 29, 3404 (2012).

https://doi.org/10.1364/JOSAB.29.003404

N.I. Grigorchuk, P.M. Tomchuk. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B 84, 085448 (2011).

https://doi.org/10.1103/PhysRevB.84.085448

N.W. Ashcroft, N.D. Mermin. Solid State Physics (Saunders College Publishing, 1976).

I.I. Shaganov, T.S. Perova, K. Berwick. The effect of the local field and dipole-dipole interactions on the absorption spectra of noble metals and the plasmon resonance of their nanoparticles. Photon. Nanostruct. Fund. Appl. 27, 24 (2017).

https://doi.org/10.1016/j.photonics.2017.09.003

W.A. Harrison. Solid State Theory (McGraw-Hill, 1970).

P.B. Johnson, R.W. Christy. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

https://doi.org/10.1103/PhysRevB.6.4370

J. Zhu, J.-J. Li, J.-W. Zhao. A computational study of the double-bands plasmonic light scattering of Al2O3 coated Al nanoshells in the deep-ultraviolet range. Appl. Surf. Sci. 314, 145 (2014). https://doi.org/10.1016/j.apsusc.2014.06.129

W.Y. Ching, Y.-N. Xu. Ground-state and optical properties of Cu2O and CuO crystals. Phys. Rev. B 40, 7684 (1989). https://doi.org/10.1103/PhysRevB.40.7684

E.M. Voronkova, B.N. Grechushnikov, G.I. Distler, I.P. Petrov. Optical Materials for Infrared Technology (Nauka, 1965) (in Russian).

Опубліковано

2021-11-01

Як цитувати

Korotun, A., Karandas, Y., Reva, V., & Titov, I. (2021). Поляризовність двошарового метал-оксидного нано-дроту. Український фізичний журнал, 66(10), 908. https://doi.org/10.15407/ujpe66.10.908

Номер

Розділ

Фізика поверхні