Оновлена модель еволюції мікроструктури лавоподіб-них паливовмісних матеріалів 4-го блока ЧАЕС. Коричнева кераміка

Автор(и)

DOI:

https://doi.org/10.15407/ujpe66.4.348

Ключові слова:

лавоподiбнi паливовмiснi матерiали, модель еволюцiї, мiкроструктура, фiзичнi та хiмiчнi процеси, прогноз, методичнi та технологiчнi пiдходи, Новий безпечний конфайнмент, окислення, радiацiйно-стимульоване фазоутворення, кристалiзацiя

Анотація

Модель еволюцiї мiкроструктури лавоподiбних паливовмiсних матерiалiв (ЛПВМ) 4-го блока Чорнобильської АЕС оновлено на прикладi коричневої керамiки. Пiдтверджено, що поведiнка ЛПВМ визначається не одним або декiлькома фiзичними i хiмiчними процесами, а їх взаємозв’язком i взаємовпливом. Фiзичнi та хiмiчнi процеси, що протiкають в ЛПВМ, доповнено ще двома новими. Уточнено вплив на поведiнку ЛПВМ ще одного ранiше вiдомого процесу. Додано новi стадiї еволюцiї мiкроструктури. Уточнено тривалостi вiдомих i визначено тривалостi нових стадiй. Представлено прогноз стану та поведiнки ЛПВМ. У найближчiй перспективi руйнування ЛПВМ не буде, у вiддаленiй – вони повнiстю зруйнуються. Оцiнено термiни руйнування ЛПВМ, розмiри частинок, на якi зруйнується склофаза. Всi включення оксидiв урану потраплять за межi ЛПВМ. Зерна оксиду урану зруйнуються до кiлькох мiкрон, а частина з них, можливо, i до субмiкронного рiвня. До 50 т мiкронних порошкiв оксидiв урану неминуче будуть брати участь у формуваннi аерозолiв, якi й представлятимуть основну небезпеку для людини. Запропоновано деякi методичнi та технологiчнi пiдходи до створення методiв твердофазного кондицiонування ЛПВМ.

Посилання

R.V. Arutyunyan, L.A. Bolshov, A.A. Borovoy, E.P. Velikhov, A.O. Klyuchnikov. Nuclear Fuel in the "Shelter" Encasement of the Chernobyl NPP (Nauka, 2010) (in Russian) [ISBN: 978-5-02-037465-2].

B.E. Burakov, E.B. Anderson, S.I. Shabalev, E.E. Strykanova, S.V. Ushakov. Behavior of nuclear fuel in fi rst days of the Chernobyl accident. MRS Proc. 465, 1297 (1997).

https://doi.org/10.1557/PROC-465-1297

B.E. Burakov, E.B. Anderson, B.Y. Galkin, E.M. Pazukhin, S.I. Shabalev. Study of Chernobyl "hot" particles and fuel containing masses: Implications for reconstructing the initial phase of the accident. Radiochim. Acta 65, 199 (1994).

https://doi.org/10.1524/ract.1994.65.3.199

S.V. Ushakov, B.E. Burakov, S.I. Shabalev, E.B. Anderson. Interaction of UO2 and zircaloy during the Chernobyl accident. MRS Proc. 465, 1313 (1996).

https://doi.org/10.1557/PROC-465-1313

S.I. Shabalev, B.E. Burakov, E.B. Anderson. General classifi cation of "hot" particles from the nearest Chernobyl contaminated areas. MRS Proc. 465, 1343 (1997).

https://doi.org/10.1557/PROC-465-1343

E.B. Anderson, B.E. Burakov, E.M. Pazukhin. High-uranium zircon from "Chernobyl lavas". Radiochim. Acta 60, 149 (1993).

https://doi.org/10.1524/ract.1993.60.23.149

E.M. Pazukhin. Fuel-containing lavas of the Chernobyl NPP fourth block: Topography, physicochemical properties, and formation scenario. Radiochemistry 36, 97 (1994) (in Russian).

A.A. Shiryaev, I. E. Vlasova, B.E. Burakov, B.I. Ogorodnikov, V.O. Yapaskurt, A.A. Averin, A.V. Pakhnevich, Y.V. Zubavichus. Physico-chemical properties of Chernobyl lava and their destruction products. Prog. Nucl. Energy 92, 104 (2016).

https://doi.org/10.1016/j.pnucene.2016.07.001

S.A. Bogatov, A.A. Borovoi, S.L. Gavrilov, A.S. Lagunenko, E.M. Pazukhin, V.A. Khvoschinskiy. Database on Location and Status of Nuclear Fuel at Unit-4 of Chernobyl NPP Before and After the Accident. Preprint N 130-11/2 (RRC "Kurchatov Institute", 2007).

A.A. Shiryaev, B.E. Burakov, I.E. Vlasova, M.S. Nickolsky, A.A. Averin, A.V. Pakhnevich. Study of mineral grains extracted from the Chernobyl "lava". Mineral. Petrol. 114, 489 (2020).

https://doi.org/10.1007/s00710-020-00718-8

S.A. Bogatov, A.A. Borovoi, A.S. Lagunenko, E.M. Pazukhin, V.F. Strizhov, V.A. Khvoshchinskii. Formation and spread of Chernobyl lavas. Radiochemistry 50, 650 (2008).

https://doi.org/10.1134/S1066362208050131

O.V. Zhydkov. 25-year evolution of "helter" object fuel-containing materials comprehension: LFCM formation scenarios and physical considerations. Probl. Bezp. At. Elektrost. Chornobyl. 16, 86 (2011) (in Ukrainian).

A.V. Zhydkov. Fuel-containing materials of the "Shelter" today: Actual physical properties and the possibility of

predicting their state. Probl. Chornobyl. 7, 23 (2001) (in Russian).

Chernobyl NPP, Unit 4 SIP, Early Biddable Projects packages D Fuel Containing Materials Characterization. Report SIP-EBPD-D-0108 1, 191 (2000).

E.M. Pazukhin, A.A. Borovoi, K.G. Rudya. Eff ect of a-ray self-irradiation on stability of lava-like fuel-containing

masses from the fourth block of the Chernobyl NPP. Radiochemistry 44, 615 (2002).

https://doi.org/10.1023/A:1022396830001

A.A. Borovoi. Nuclear fuel in the Shelter. At. Energ. 100, 249 (2006).

https://doi.org/10.1007/s10512-006-0079-3

O.O. Klyuchnykov, V.O. Krasnov, V.M. Rudko, V.M. Shcherbin. Current state of the "Ukryttya" object. Probl. Bezp. At. Elektrost. Chornobyl. 5, 6 (2006) (in Russian).

A.A. Klyuchnikov, V.A. Krasnov, V.M. Rudko, V.N. Shcherbin. Object "Shelter" 1986-2006 (Institute for Safety Problems of NPP, 2006) (in Russian).

V.O. Krasnov, A.V. Nosovskiy, V.M. Rud'ko, V.M. Shcherbin. "Shelter" Object: 30 Years After the Accident (Institute for Safety Problems of NPP, 2016) [ISBN: 978-966-02-7875-2] (in Ukrainian).

S.V. Gabielkov, A.V. Nosovskiy, V.N. Shcherbin. Model of degradation of lava-like fuel-containing materials of the "Shelter". Probl. Bezp. At. Elektrost. Chornobyl. 26, 75 (2016) (in Russian).

S.V. Gabielkov, O.O. Kliuchnykov, Ye.Ye. Oliynyk, P.E. Parkhomchuk, G.F. Chemersky, V.M. Shcherbin. Nanosized pore channels as a component of pore space of lava-like fuel-containing materials of "Ukryttya" object. Probl. Bezp. At. Elektrost. Chornobyl. 22, 70 (2014) (in Russian).

S.V. Gabielkov, O.O. Kliuchnykov, P.E. Parkhomchuk, G.F. Chemersky. The nature of the formation of nanoscale

pore channels lava-like fuel-containing materials of the object "Shelter". Probl. At. Sci. Technol. 96, 77 (2015) (in Russian).

S.V. Gabielkov, I.V. Zhyganiuk, V.G. Kudlay, A.V. Nosovsky, P.E. Parhomchuk, A.D. Skorbun, S.A. Chikolovets. Crystalline phases of fuel-containing materials of NSC-SO. International Conference on Nuclear Decommissioning and Environment Recovery 18, 67 (2018) (in Russian).

S.V. Gabielkov, I.V. Zhyganiuk, V.G. Kudlay, P.E. Parhomchuk, A.D. Skorbun, S.A. Chikolovets. Crystalline phases of lava-like fuel-containing materials of NSC-SO. Semipalatinsk Test Site: VIII International Conference 18, 128 (2018) (in Russian).

S.V. Gabielkov, I.V. Zhyganiuk, V.G. Kudlai, P.E. Parkhomchuk, A.D. Skorbun, S.A. Chikolovets. Radiation-stimulated phase formation in lava-like fuel-containing materials from 4th unit of Chernobyl NPP. In Proceedings of the XVI Annual Scientifi c Conference (Institute for Nuclear Research, Kyiv, 2019), p. 106.

https://doi.org/10.31717/1813-3584.19.32.6

S.V. Gabielkov, I.V. Zhyganiuk, V.G. Kudlai, P.E. Parhomchuk, A.D. Skorbun, S.A. Chikolovets. New processes in lava-like fuel containing materials of NSC-SO: Crystallization and radiation-stimulated phase formation. IV International Scientifi c and Practical Workshop "Chornobyl Experience as a Solution of the Problems in Mitigating Fukushima 1 Accident" 19, 4 (2019).

S.V. Gabielkov, I.V. Zhyganiuk, V.G. Kudlai, P.E. Parkhomchuk, S.A. Chikolovets. Crystallization of lava-like fuel-containing materials from NSC-SO. Probl. Bezp. At. Elektrost. Chornobyl. 32, 44 (2019) (in Ukrainian).

https://doi.org/10.31717/1813-3584.19.32.6

S.V. Gabielkov, I.V. Zhyganiuk, V.G. Kudlai, A.V. Nosovsky, P.E. Parkhomchuk, S.O. Chikolovets, V.M. Shcherbin. Phase composition of brown ceramics of lava-like fuel-containing materials of the object "Shelter" ChNPP. Nucl. Phys. At. Energy 20, 388 (2019) (in Ukrainian).

https://doi.org/10.15407/jnpae2019.04.388

O.V. Kazmina, E.N. Belomestnova, A.A. Dietz. Chemical Technology of Glass and Sitalls (Tomsk Polytechnic University, 2012) (in Russian).

Handbook of Glass Production. In 2 volumes. Edited by I.I. Kitaigorodskii, S.I. Silvestrovich (Gosstroiizdat, 1963) (in Russian).

S.V. Gabielkov, O.O. Kliuchnykov, Ye.Ye. Oliynyk et al. Inhomogeneity of the structure of lava-like fuel-containing masses of the "Shelter" object. IX International. Conf. "Nuclear and Radiation Physics" 13, 63 (2013).

I. Vlasova, A. Shiryaev, B Ogorodnikov et al. Radioactivity Distribution in Fuel-Containing Materials (Chernobyl "Lava") and Aerosols from the Chernobyl "Shelter". Radiat. Meas. 83, 20 (2015). https://doi.org/10.1016/j.radmeas.2015.06.005

N.S. Turaev, I.I. Zherin Chemistry and Technology of Uranium (Tsniiatominform, 2005) (in Russian).

N.A. Toropov. Handbook of Phase Diagrams of Silicate Systems: Metal-Oxygen Compounds in Silicate Systems. Vol. 2 (I.P.S.T., 1972).

N.M. Bobkova. Physical Chemistry of Silicates and Refractory Compounds (Vysshaya Shkola, 1984).

F.V. Stohl, D.K. Smith. The crystal-chemistry of the uranyl silicate minerals. Am. Mineral. 66, 610 (1981).

S.V. Gabielkov, I.V. Zhyganiuk. The updated model of mi-

crostructure evolution of lava-like fuel-containing materials of complex NSC-SO. In Proceedings of the XXVII Annual Scientifi c Conference (Institute for Nuclear Research, Kyiv, 2020), p. 124.

V.G. Bar'yakhtar, V.V. Gonchar, A.V. Zhydkov, A.A. Klyuchnikov. Radiation Damage in Lava-Like Fuel-Containing Materials of the "Shelter" (NASU, ISTC "Shelter", 1998).

S.V. Gabielkov, A.A. Klyuchnikov, P.E. Parkhomchuk et al. Water and pore spaces of lava-like fuel-containing materials of the "Shelter" object. In Proceedings of the XII International. Conference "Physical Phenomena in Solids" (V.N. Karazin Kharkiv National University, 2015), p. 51.

S.V. Gabelkov, V.V. Makarenko, A.G. Mironova et al. Determination of the volume of pore channels of porous materials by removing water from them during evaporation. Refract. Tech. Ceram. 12, 41 (2006).

S.V. Gabelkov. Physical foundations and experience of application of method of determination of volumes of all

group of pore channels in powders and porous bodies. Probl. At. Sci. Technol. 6, No. 19, 71 (2011).

Y.A. Teterin, A.S. Baev, S.A. Bogatov. X-ray photoelectron study of samples containing reactor fuel from "lava" and products growing on it which formed at Chernobyl NPP due to the accident. J. Electron. Spectrosc. Rel. Phenom. 68, 685 (1994). https://doi.org/10.1016/0368-2048(94)02173-2

A.S Vishnevsky, I.B. Kuzmina, V.N. Tkach, V.V. Tokarevsky. Experimental research of radioactive neoplasms of the "Shelter" object. Probl. Chernobyl Exclusion Zone 3, 214 (1996).

A.S Vishnevsky, I.B. Kuzmina, V.V. Tokarevsky. Crystallization and destruction processes of secondary uranium

minerals of the "Shelter" object. Probl. Chernobyl Exclusion Zone 4, 134 (1996).

B.E. Burakov, E.E. Strykanova, E.B. Anderson. Secondary uranium minerals on the surface of Chernobyl "lava". MRS Proc. 465, 1309 (1996). https://doi.org/10.1557/PROC-465-1309

E.M. Rakitskaya, A.S. Panov. The behavior of uranium dioxide in various gases. At. Energy 89, 890 (2000). https://doi.org/10.1023/A:1011390215421

S.V. Gabelkov. Crystallization kinetics of amorphous zirconium nanoparticles. Dopov. Nats. Akad. Nauk Ukr. 7, 83 (2011) (in Russian).

G.N. Shabanova, S.V. Gabelkov, R.V. Tarasov et al. Features of crystallization of amorphous zirconium oxide in a temperature interval of 200-450 ∘C. Refract. Tech. Ceram. 8, 2 (2005) (in Russian).

S.V. Gabelkov, R.V. Tarasov, N.S. Poltavtsev et al. Phase transformations during nanocrystallization of amorphous zirconium oxide. Probl. At. Sci. Technol. No. 3, 116 (2004) (in Russian).

V.Z. Belenkii. Geometric-Probabilistic Models of Crystallization. The Phenomenological Approach (Nauka, 1980) (in Russian).

V.I. Zemlyanukhin, E.I. Ilienko, A.N. Kondrat'ev et al. Radiochemical Reprocessing of Nuclear Fuel of Nuclear Power Plants (Energoatomizdat, 1989) (in Russian).

B.V. Gromov, V.I. Savelyeva, V.B. Shevchenko. Chemical Technology of Irradiated Nuclear Fuel (Energoatomizdat, 1983) (in Russian).

Опубліковано

2021-05-13

Як цитувати

Gabielkov, S., & Zhyganiuk, I. (2021). Оновлена модель еволюції мікроструктури лавоподіб-них паливовмісних матеріалів 4-го блока ЧАЕС. Коричнева кераміка. Український фізичний журнал, 66(4), 348. https://doi.org/10.15407/ujpe66.4.348

Номер

Розділ

Структура речовини