Спектральний аналіз та інваріантна міра при вивченні динаміки гемостазу кровоносної судини

Автор(и)

  • V.I. Grytsay Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.3.221

Ключові слова:

гемостаз, самоорганiзацiя, дивний атрактор, ряд Фур’є, iнварiантна мiра, ЛПНЩ, цитокiни

Анотація

В данiй роботi продовжується дослiдження математичної моделi атеросклерозу кровоносної судини з урахуванням надходження в кров лiпопротеїдiв низької щiльностi (ЛПНЩ). В данiй моделi вперше враховано вплив цитокiнiв на запалення судини при утвореннi атеросклеротичних бляшок. За допомогою розкладу в ряд Фур’є та розрахунку iнварiантної мiри дослiджено сценарiй виникнення дивних атракторiв у залежностi вiд змiни параметра дисипацiї холестерина. Зроблено висновки про взаємозв’язок мiж динамiкою метаболiчного процесу кровоносної системи i її фiзичним станом.

Посилання

Great Medicinal Encyclopedia (Sovetsk. Entsikl., 1977), vol. 5, p. 223 (in Russian).

V.V. Verkhusha, V.M. Staroverov, P.V. Vrzhesh. The model of adhesive interaction of cells in the flow of a fluid. Biol. Membr. 11, No. 4, 437 (1994).

V.P. Baluda, M.V. Baluda, I.I. Deyanov. Physiology of the System of Hemostasis (Meditsina, 1995) (in Russian).

A.S. Shitikova. Thrombocytic Hemostasis (SPbSMU, 2000) (in Russian).

S.D. Varfolomeev, A.T. Mevkh. Prostaglandins - Molecular Bioregulators (Moscow University, 1985) (in Russian).

S.D. Varfolomeev, A.T. Mevkh, V.P. Gachok. Kinetic model of multienzyme system of blood prostanoid synthesis. 1. Mechanism of stabilization of the levels of thromboxane and prostacyclin. Molek. Biol. 20, No. 4, 957 (1986).

https://doi.org/10.1016/0303-2647(86)90033-X

S.D. Varfolomeev, V.P. Gachok, A.T. Mevkh. Kinetic behavior of the multienzyme system of blood prostanoid synthesis. BioSystems. 19, 45 (1986).

https://doi.org/10.1016/0303-2647(86)90033-X

P. Libby. The molecular bases of acute coronary syndromes. Circulation 91, No. 11, 2844 (1995).

https://doi.org/10.1161/01.CIR.91.11.2844

M.J. Davies. Stability and Instability: The two faces of coronary atherosclerosis. Paul Dudley White Lecture 1995. Circulation 94, No. 8, 2013 (1996).

https://doi.org/10.1161/01.CIR.94.8.2013

J. Berliner et al. Oxidized lipids in atherogenesis: Formation, destruction and action. Thrombosis and Haemostasis 78, No. 1, 195 (1997).

https://doi.org/10.1055/s-0038-1657525

D. Steinberg. Low density lipoprotein oxidation and its pathobiological significance. J. Biolog. Chem. 272, No. 34, 20963 (1997).

https://doi.org/10.1074/jbc.272.34.20963

P. Libby. Current concepts of the pathogenesis of the acute coronary syndroms. Circulation 104, No. 3, 365 (2001).

https://doi.org/10.1161/01.CIR.104.3.365

P. Libby. The vascular biology of atherosclerosis. In: Heart Disease: A Textbook of Cardiovascular Medicine. Edited by E. Braunwald, D.P. Zipes, P. Libby (Saunders, 2001) [ISBN: 0721685617, 9780721685618].

P. Libby, P.M. Ridker, A. Maseri. Inflammation and atherosclerosis. Circulation 105, No. 9, 1135 (2002).

https://doi.org/10.1161/hc0902.104353

P. Libby. Atherosclerosis: New look. Svit Nauky Nos. 4-5 (15-16), 19 (2002).

V.I. Grytsay, V.P. Gachok. Self-organization in fusion system of tromboxan and Prostacyclin. In: Abstracts of the V International Congress on Mathematical Modelling, V ICMM, September 30-October 6, 2002, Dubna, Moscow Region, Vol. II, p. 200.

V.I. Grytsay. Conditions of self-organization of the multienzyme prostacyclin-thromboxane system. Bulletin of the Univ. of Kiev. Ser. Phys. & Math. No. 3, 372 (2002).

V.I. Grytsay, V.P. Gachok. Regimes of self-organization in system of prostacyclin and tromboxan. Bulletin of the Univ. of Kiev. Ser. Phys. & Math. No. 4, 365 (2002).

V.I. Grytsay. Processes Modeling of the multienzyme prostacyclin and thromboxan system. Bulletin of the Univ. of Kiev. Ser. Phys. & Math., No. 4, 379 (2003).

V.I. Grytsay, V.P. Gachok. Ordered structures in mathematical system of prostacyclin and tromboxan model. Bulletin of the Univ. of Kiev. Ser. Phys. & Math. No. 1, 338 (2003).

V.I. Grytsay. Processes modelling of the multienzyme prostacyclin and tromboxan system. Bulletin of the Univ. of Kiev. Ser. Phys. & Math. No. 4, 379 (2003).

V.I. Grytsay. Self-organization and chaos in the metabolism of hemostasis in a blood vessel. Ukr. J. Phys. 61, No. 7, 648 (2016).

https://doi.org/10.15407/ujpe61.07.0648

V.I. Grytsay. A mathematical model of the metabolic process of atherosclerosis. Ukr. Biochem. J. 88, No. 4, 75 (2016).

https://doi.org/10.15407/ubj88.04.075

V.S. Anishchenko. Complex Oscillations in Simple Systems (Nauka, 1990) (in Russian).

S.P. Kuznetsov. Dynamical Chaos (Fizmatlit, 2001) (in Russian).

V.I. Grytsay. The self-organization in a macroporous structure of a gel with immobilized cells. The kinetic model of a bioselective membrane of biosensor. Dopov. NAN Ukr. No. 2, 175 (2000).

V.I. Grytsay. The self-organization in a reaction-diffusion porous medium. Dopov. NAN Ukr. No. 3, 201 (2000).

V.P. Gachok, V.I. Grytsay. The kinetic model of a macroporous granule with the regulation of biochemical proceses. Dokl. AN SSSR 282, No. 1, 51 (1985).

V.P. Gachok., V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, V.K. Akimenko. Kinetic model of hydrocortizone 1-en dehydrogenation by Arthrobacter globiformis. Biotechn. Bioengin. 33, 661 (1989).

https://doi.org/10.1002/bit.260330602

V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, V.K. Akimenko. Kinetic model for the regulation of redox reactions in steroid transformation by Arthrobacter globiformis cells. Biotechn. Bioengin. 33, 668 (1989).

https://doi.org/10.1002/bit.260330603

V.I. Grytsay. Ordered structures in the mathematical model of a biosensor. Dopov. NAN Ukr. No. 11, 112 (2000).

V.I. Grytsay. The self-organization of the biochemical process of immobilized cells of a bioselective membrane of a biosensor. Ukr. Fiz. Zh. 46, No. 1, 124 (2001).

V.I. Grytsay. Ordered and chaotic structures in the reaction-diffusion medium. Visn. Kyiv. Univ. No. 2, 394 (2002).

V.I. Grytsay. Conditions of self-irganization of the prostacyclin-thromboxane system. Visn. Kyiv. Univ. No. 3, 372 (2002).

V.V. Andreev, V.I. Grytsay. Modeling of nonactive zones in porous granules of a catalyst and in a biosensor. Matem. Model. 17, No. 2, 57 (2005).

V.V. Andreev, V.I. Grytsay. Influence of the inhomogeneity of running of a diffusion-reaction process on the formation of structures in the porous medium. Matem. Modelir. 17, No. 6, 3 (2005).

V.I. Grytsay, V.V. Andreev. The role of diffusion in the formation of nonactive zones in porous reaction-diffusion media. Matem. Modelir. 18, No. 12, 88 (2006).

V.I. Grytsay. Unsteady conditions in porous reaction-diffusion medium. Romanian J. Biophys. 17, No. 1, 55 (2007).

V.I. Grytsay. Uncertainty of the evolution of structures in the reaction-diffusion medium of a bioreactor. Biofiz. Visn. Iss. 2 (19), 92 (2007).

V.I. Grytsay. Formation and stability of the morphogenetic field of immobilized cells of a bioreactor. Biofiz. Visn., Iss. 1 (20), 48 (2008).

V.I. Grytsay. Prediction structural instability and type attractor of biochemical process. Biofiz. Visn. Iss. 23 (2), 77 (2009).

V.I. Grytsay. Structural instability of a biochemical process. Ukr. J. Phys. 55 (5), 599 (2010).

V.I. Grytsay, I.V. Musatenko. The structure of a chaos of strange attractors within a mathematical model of the metabolism of a cell. Ukr. J. Phys. 58, No. 7, 677 (2013).

https://doi.org/10.15407/ujpe58.07.0677

V.I. Grytsay, I.V. Musatenko. Self-oscillatory dynamics of the metabolic process in a cell. Ukr. Biochim. Zh. 85, No. 2, 93 (2013).

https://doi.org/10.15407/ubj85.02.093

V.I. Grytsay, I.V. Musatenko. A mathematical model of the metabolism of a cell. CMSIM 2, No. 4, 539 (2013).

V.I. Grytsay, I.V. Musatenko. Self-organization and fractality in a metabolic processes of the Krebs cycle. Ukr. Biokhim. Zh. 85, No. 5, 191 (2013).

https://doi.org/10.15407/ubj85.05.191

V.I. Grytsay, I.V. Musatenko. Self-organization and chaos in the metabolism of a cell, Biopolymers and Cells, 30, No. 5, 404 (2014).

https://doi.org/10.7124/bc.0008B9

V. Grytsay, I. Musatenko. Nonlinear self-organization dynamics of a metabolic process of the Krebs cycle. CMSIM 3, 207 (2014).

V. Grytsay. Lyapunov indices and the Poincar'e mapping in a study of the stability of the Krebs cycle. Ukr. J. Phys. 60, No. 6, 564 (2015).

https://doi.org/10.15407/ujpe60.06.0561

V.I. Grytsay. Self-organization and fractality in the metabolic process of glycolysis. Ukr. J. Phys. 60, No. 12, 1253 (2015).

https://doi.org/10.15407/ujpe60.12.1251

V.I. Grytsay. Self-organization and fractality created by gluconeogenesis in the metabolic process. CMSIM 5, 113 (2016).

V.I. Grytsay. Spectral analysis and invariant measure in the study of a nonlinear dynamics of the metabolic process in cells. Ukr. J. Phys. 62, No. 5, 448 (2017).

https://doi.org/10.15407/ujpe62.05.0448

V.P. Gachok. Kinetics of Biochemical Processes (Naukova Dumka, 1988) (in Russian).

V.P. Gachok. Strange Attractors in Biosystems (Naukova Dumka, 1989) (in Russian).

G.Yu. Riznichenko. Mathematical Models in Biophysics and Ecology (Inst. of Computer. Studies, Moscow, Izhevsk, 2003) (in Russian).

Yu.M. Romanovskii, N.V. Stepanova, D.S. Chernavskii. Mathematical Biophysics (Nauka, 1984) (in Russian).

E.E. Selkov. Self-oscillations in glycolysis. Europ. J. Biochem. 4, 79 (1968).

https://doi.org/10.1111/j.1432-1033.1968.tb00175.x

O.P. Matyshevska, A. Yu. Karlash, Ya. V. Shtogum, A. Benilov, Yu. Kirgizov, K. O. Gorchinskyy, E.V. Buzaneva, Yu. I. Prylutskyy, P. Scharff. Self-organizing DNA/carbon nanotube molecular films. Mater. Sci. Engin. C 15, Nos. 1-2, 249 (2001).

https://doi.org/10.1016/S0928-4931(01)00309-5

S.V. Prylutska, O.P. Matyshevska, I.I. Grynyuk, Yu.I. Prylutskyy, U. Ritter, P. Scharff. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liq. Cryst. 468, 265-274 (2007).

https://doi.org/10.1080/15421400701230105

Downloads

Опубліковано

2021-04-07

Як цитувати

Grytsay, V. (2021). Спектральний аналіз та інваріантна міра при вивченні динаміки гемостазу кровоносної судини. Український фізичний журнал, 66(3), 221. https://doi.org/10.15407/ujpe66.3.221

Номер

Розділ

Загальна фізика