Вихрові структури і динаміка електронного пучка в замагніченій плазмі

Автор(и)

  • V.I. Maslov Space Research Institute, Nat. Acad. of Sci. of Ukraine and the State Space Agency of Ukraine, NSC Kharkiv Institute of Physics and Technology, Nat. Acad. of Sci. of Ukraine
  • O.K. Cheremnykh Space Research Institute, Nat. Acad. of Sci. of Ukraine and the State Space Agency of Ukraine
  • A.P. Fomina Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • R.I. Kholodov Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • O.P. Novak Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • R.T. Ovsiannikov Karazin Kharkiv National University

DOI:

https://doi.org/10.15407/ujpe66.4.310

Ключові слова:

динамiка електронного пучка, подвiйний електричний шар, механiзм вiдбиття електронiв, iоносфера Iо, плазма, вихори

Анотація

В данiй роботi дослiджено задачу про формування вихрових структур при вiдбиттi пучка електронiв вiд подвiйного шару iоносфери Юпiтера та вплив цих структур на виникнення щiльних висхiдних електронних пучкiв, прискорених потенцiалом подвiйного шару вздовж потокової трубки Iо, для яких стає можливий фазовий перехiд в режим циклотронного надвипромiнення. Розглянуто умови формування вихрових збурень. Знайдено нелiнiйне рiвняння, яке описує вихрову динамiку електронiв, та вивчено його наслiдки.

Посилання

T.D. Carr, M.D. Desch, J.K. Alexander. Phenomenology of Magnetospheric Radio Emissions, Physics of the Jovian

Magnetosphere. Edited by A.J. Dessler (Cambridge Univ. Press, 1983).

N. Krupp et al. Dynamics of the Jovian Magnetosphere, in Jupiter: Planet, Satellites, Magnetosphere. Edited by F. Bagenal (Cambridge Univ. Press, 2004) [ISBN: 0-521-81808-7].

J.T. Clarke et al. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415 (6875), 997 (2002).

https://doi.org/10.1038/415997a

J.E.P. Connerney et al. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science 356, 826 (2017).

https://doi.org/10.1126/science.aam5928

B.H. Mauk, D.K. Haggerty et al. Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature 549, 66 (2017).

https://doi.org/10.1038/nature23648

W.R. Dunn, G. Branduardi-Raymont et al. The independent pulsations of Jupiter's northern and southern X-ray auroras. Nature. Astronomy 1, 758 (2017).

https://doi.org/10.1038/s41550-017-0262-6

D.J. McComas, N. Allegrini et al. The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Sci. Rev. 213, 547 (2017).

https://doi.org/10.1007/s11214-013-9990-9

B.H. Mauk et al. Juno observation of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophys. Res. Lett. 44, 4410 (2017).

https://doi.org/10.1002/2016GL072286

W.S. Kurth, M. Imai et al. A new view of Jupiter's auroral radio spectrum. Geophys. Res. Lett. 44, 7114 (2017).

https://doi.org/10.1002/2017GL072889

P.I. Fomin, A.P. Fomina. Dicke superradiance on Landau levels. Probl. of atomic sci. and techn. 1, 45 (2001).

V.M. Mal'nev, A.P. Fomina, P.I. Fomin. Polarization phase transition to the superradiance regime of the inverted system of electrons on high Landau levels. Ukr. J. Phys. 47, 1001 (2002).

P.I. Fomin, A.P. Fomina, V.N. Mal'nev. Superradiation of magnetized electrons and the power of decameter radiation of the Jupiter-Io system. Ukr. J. Phys. 49, 3 (2004).

О.P. Novak, A.P. Fomina, R.I. Kholodov. Account of the longitudinal temperature in cyclotron superradiance. Probl. of Atomic Sci. and Techn. 85, 69 (2013).

О. Novak, R. Kholodov, A. Fomina. Role of double layers in the formation of conditions for a polarization phase transition to the superradiance state in the Io flux tube. Ukr. J. Phys. 63, 740 (2018).

https://doi.org/10.15407/ujpe63.8.740

V.I. Maslov. The double layer formed by a nonrelativistic electron beam in the one-dimensional plasma. Ukr. J. Phys. 33, 1342 (1988).

V.I. Maslov. Electron beam refl ection from the plasma due to double layer formation. In: Proc. of 4th Int. Workshop on Nonlinear and Turbulent Processes in Physics (Singapore, 1990), p. 898.

V.I. Maslov. Properties and evolution of nonstationary double layers in nonequilibrium plasma. In: Proc. of 4th

Symposium on Double Layers and Other Nonlinear Structures in Plasma (Innsbruck, 1992), p. 82.

V.I. Maslov. Double layer formed by a relativistic electron beam. Sov. J. of Plasma Phys. 18, 676 (1992).

V.I. Maslov, V.V. Oraevsky, Yu.Ya. Ruzhin. Ion acceleration in collective fi elds at electron beam injection from spacecraft in experiment "APEX". Phys. Scr. 57, 453 (1998).

https://doi.org/10.1088/0031-8949/57/3/019

V. Lapshin, V. Maslov, V. Stomin. Analytical description of T. Sato's mechanism of transformation of ion-acoustic

double layer into strong Buneman's one in cosmic and laboratory nonequilibrium plasmas. J. Plasma Fusion Res. Ser. 4, 564 (2001).

Ie.V. Borgun, N.A. Azarenkov, A. Hassanein, A.F. Tseluyko, V.I. Maslov, D.L. Ryabchikov. Double layer influence on dynamic of the EUV radiation from plasma of the high-current pulse diode in the tin vapour. Phys. Lett. A 377 (3-4), 307 (2013).

https://doi.org/10.1016/j.physleta.2012.11.027

M.A. Raadu. The physics of double layers and their role in astrophysics. Phys. Rep. 178, 25 (1989).

https://doi.org/10.1016/0370-1573(89)90109-9

R.E. Ergun, Y.J. Su, L. Andersson et al. Direct observation of localized parallel electric fi elds in a space plasma. Phys. Rev. Lett. 87, 045003 (2001).

https://doi.org/10.1103/PhysRevLett.87.045003

V.I. Maslov, I.P. Levchuk, S. Nikonova, I.N. Onishchenko. Occurrence of accelerating field, formation and dynamics of relativistic electron beam near Jupiter. East Eur. J. Phys. 5, 78 (2018).

https://doi.org/10.26565/2312-4334-2018-2-11

V.I. Maslov, A.P. Fomina, R.I. Kholodov, I.P. Levchuk, S. Nikonova, O.P. Novak, I.N. Onishchenko. Accelerating

field excitation, occurrence and evolution of electron beam near Jupiter. Probl. of Atomic Sci. and Techn. 4, 106 (2018).

P.J. Hendricks. Vorticity transport by electromagnetic forces. NUWC-NPT Techn. Report 10, 712 (1998).

https://doi.org/10.21236/ADA345445

H. Helmholtz. Uber integralle der hydrodynamischen Gleichungen, welche den Wirbewegungen entsprechen. Crelle J. 55, 25 (1858). https://doi.org/10.1515/crll.1858.55.25

W. Thomson. On vortex motion. Trans. Roy. Soc. Edinburgh 25, 217, (1869). https://doi.org/10.1017/S0080456800028179

C. Paranicas, B. Mauk et al. Intervals of intense energetic electron beams over Jupiter's poles. J. of Geoph. R.: Space Physics 123 (A10), 1989 (2018). https://doi.org/10.1002/2017JA025106

A. Mura, A. Adriani, J.E.P. Connerney et al. Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science 361 (6404), 774 (2018). https://doi.org/10.1126/science.aat1450

Downloads

Опубліковано

2021-05-13

Як цитувати

Maslov, V., Cheremnykh, O., Fomina, A., Kholodov, R., Novak, O., & Ovsiannikov, R. (2021). Вихрові структури і динаміка електронного пучка в замагніченій плазмі. Український фізичний журнал, 66(4), 310. https://doi.org/10.15407/ujpe66.4.310

Номер

Розділ

Фізика плазми

Статті цього автора (авторів), які найбільше читають