Development and Characterization of Ceramic Inserts Used in Metallic Resonators of EPR Spectrometers to Increase Their Sensitivity

Authors

  • S.V. Lemishko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • I.P. Vorona V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • I.S. Golovina V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine, Drexel University
  • V.O. Yukhymchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • S.M. Okulov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V.V. Nosenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • S.O. Solopan V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine
  • A.G. Belous V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.6.497

Keywords:

EPR spectroscopy, dielectric resonators, EPR sensitivity, barium tetratitanate

Abstract

Cylindrical dielectric inserts for a standard EPR spectrometer with a metallic resonator have been developed on the basis of doped barium tetratitanate ceramics (BaTi4O9 + 8.5% ZnO) with the dielectric constant e = 36 and low dielectric losses (tan б ≈ 1.887 × 10−4) in a frequency interval of 9–10 GHz. It was found that the application of such dielectric inserts allows the EPR signal to be amplified owing to the redistribution of the microwave field in a standard rectangular TE102 resonator. The amplification is observed for both unsaturated samples and samples characterized by the saturation of the EPR signals. A gain factor of 9 was obtained for unsaturated test MnCl2 samples, and 1.5 for saturated test MgO : Mn ones.

References

G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber. Quantitative EPR: A Practitioner's Guide (Springer, 2010) [ISBN: 978-3-211-9294-76].

https://doi.org/10.1007/978-3-211-92948-3

V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V. Frolov, A. Komolkin, M.G. Shelyapina. Magnetic Resonance and Its Applications (Springer, 2014) [ISBN: 978-3-319-05298-4].

https://doi.org/10.1007/978-3-319-05299-1

I. Golovina, B. Shanina, S. Kolesnik, I. Geifman, A. Andriiko. Magnetic defects in KTaO3 and KTaO3 : Fe nanopowders. Phys. Status Solidi B 249, 2263 (2012).

https://doi.org/10.1002/pssb.201248157

F. Muller, M.A. Hopkins, N. Coron, M. Grynberg, L.C. Brunel, G. Martinez. A high magnetic field EPR spectrometer. Rev. Sci. Instrum. 60, 3681 (1989).

https://doi.org/10.1063/1.1140474

Ch.P. Poole Jr. Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Dover, 1997) [ISBN: 978-5-94836-220-5].

G.A. Rinard, R.W. Quine, J.R. Harbridge, R. Song, G.R. Eaton, S.S. Eaton. Frequency dependence of EPR signal-to-noise. J. Magn. Reson. 140, 218 (1999).

https://doi.org/10.1006/jmre.1999.1798

V.E. Galtsev, E.V. Galtseva, O.Y. Grinberg, Y.S. Lebedev. Human tooth EPR dosimetry with enhanced sensitivity. J. Radioanal. Nucl. Chem. 186, 35 (1994).

https://doi.org/10.1007/BF02163240

Y. Deng, R.P. Pandian, R. Ahmad, P. Kuppusamy, J.L. Zweier. Application of magnetic field over-modulation for improved EPR linewidth measurements using probes with Lorentzian lineshape. J. Magn. Reson. 181, 254 (2006).

https://doi.org/10.1016/j.jmr.2006.05.010

I.N. Geifman, I.S. Golovina, V.I. Kofman, E.R. Zusmanov. The use of ferroelectric material for increasing the sensitivity of EPR spectrometers. Ferroelectrics 234, 81 (1999).

https://doi.org/10.1080/00150199908225283

I.N. Geifman, I.S. Golovina, E.R. Zusmanov, V.I. Kofman. Raising the sensitivity of the electron-paramagnetic-resonance spectrometer using a ferroelectric resonator. Techn. Phys. 45, 263 (2000).

https://doi.org/10.1134/1.1259610

I. Geifman, I.S. Golovina. Electromagnetic characterization of rectangular ferroelectric resonators. J. Magn. Reson. 174, 292 (2005).

https://doi.org/10.1016/j.jmr.2005.02.017

R.R. Mett, J.W. Sidabras, I.S. Golovina, J.S. Hyde. Dielectric microwave resonators in TE011 cavities for electron

paramagnetic resonance spectroscopy. Rev. Sci. Instrum. 79, 094702 (2008).

https://doi.org/10.1063/1.2976033

J.S. Hyde, R.R. Mett. EPR uniform fi eld signal enhancement by dielectric tubes in cavities. Appl. Magn. Reson. 48, 1185 (2017).

https://doi.org/10.1007/s00723-017-0935-4

I.S. Golovina, I.N. Geifman, V.E. Rodionov. Dielectric Resonators for EPR Spectroscopy (V.E. Lashkarev Institute of Semiconductor Physics, 2015) (in Russian) [ISBN: 978-966-02-7675-8].

R. Biehl. The dielectric ring TE 011 cavity. Bruker Report No. 1, 45 (1986).

A. Blank, E. Stavitski, H. Levanon, F. Gubaydullin. Transparent miniature dielectric resonator for electron paramagnetic resonance experiments. Rev. Sci. Instrum. 74, 2853 (2003). https://doi.org/10.1063/1.1568550

I.N. Geifman, I.S. Golovina. Magnetic resonance spectrometer. US Patent No. 7,268,549 B2. Issued Sept. 11, 2007.

A. Munir, Z.M. Khan. Microstructure and microwave dielectric properties of BaTi4O9 ceramics derived from a sol-gel precursor. Adv. Mater. Res. 326, 127 (2011). https://doi.org/10.4028/www.scientific.net/AMR.326.127

X. Huang, Y. Song, F. Wang. Microwave dielectric properties of BaTi4O9-BaSm2Ti4O12 composite ceramics. J. Ceram. Soc. Japan 121, 880 (2013). https://doi.org/10.2109/jcersj2.121.880

A. Belous, O. Ovchar, D. Durilin, M. Macek-Krzmanc, M. Valant. The homogeneity range and the microwave dielectric properties of the BaZn2Ti4O11 ceramics. J. Eur. Ceram. Soc. 26, 3733 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.013

M.E. Ilchenko, V.F. Vzyatyshev, L.G. Gassanov et al. Dielectric Resonators (Radio i Svyaz', 1989) (in Russian) [ISBN: 5256002171, 9785256002176].

V.N. Syryamina, A.G. Matveeva, Y.V. Vasiliev, A. Savitsky, Y.A. Grishin. Improving B1 fi eld homogeneity in dielectric tube resonators for EPR spectroscopy via controlled shaping of the dielectric insert. J. Magn. Reson. 311, 32 (2020). https://doi.org/10.1016/j.jmr.2020.106685

Published

2021-07-06

How to Cite

Lemishko, S., Vorona, I., Golovina, I., Yukhymchuk, V., Okulov, S., Nosenko, V., Solopan, S., & Belous, A. (2021). Development and Characterization of Ceramic Inserts Used in Metallic Resonators of EPR Spectrometers to Increase Their Sensitivity. Ukrainian Journal of Physics, 66(6), 497. https://doi.org/10.15407/ujpe66.6.497

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)