Optical Properties of Cation-Substituted (Cu1 – xAgx)7GeSe5I Mixed Crystals

Authors

  • M.M. Pop Uzhhorod National University, Faculty of Physics
  • V.I. Studenyak Uzhhorod National University, Faculty of Physics
  • A.I. Pogodin Uzhhorod National University, Faculty of Physics
  • O.P. Kokhan Uzhhorod National University, Faculty of Physics
  • L.M. Suslikov Uzhhorod National University, Faculty of Physics
  • I.P. Studenyak Uzhhorod National University, Faculty of Physics
  • P. Kúš Faculty of Mathematics, Physics and Informatics, Comenius University

DOI:

https://doi.org/10.15407/ujpe66.5.406

Keywords:

mixed crystal, spectral ellipsometry, refractive index, diffuse reflection, energy pseudogap

Abstract

(Cu1−xAgx)7GeSe5I mixed crystals were grown by the vertical zone crystallization method and are shown to crystallize in a cubic structure (F43m). The diff use reflection spectra for the powders of (Cu1−xAgx)7GeSe5I mixed crystals were measured at room temperature. The refractive indices and extinction coefficients for (Cu1−xAgx)7GeSe5I mixed crystals were obtained from spectral ellipsometry measurements. Two anomalies of the refractive index in the spectral region from 440 nm to 1000 nm are observed. One of them corresponds to the band-to-band optical transition, while another one to the interband Van Hove–Phillips singularity. A nonlinear decrease of the energy pseudogap is revealed with an increase in the Ag content in (Cu1−xAgx)7GeSe5I mixed crystals.

References

W.F. Kuhs, R. Nitsche, K. Scheunemann. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 14, 241 (1979).

https://doi.org/10.1016/0025-5408(79)90125-9

T. Nilges, A. Pfitzner. A structural differentiation of quaternary copper argirodites: Structure - property relations

of high temperature ion conductors. Z. Kristallogr. 220, 281 (2005).

I.P. Studenyak, M. Kranjcec, M.V. Kurik. Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−yIy superionic conductors. J. Phys. Chem. Solids 67, 807 (2006).

https://doi.org/10.1016/j.jpcs.2005.10.184

J. Auvergniot, A. Cassel, D. Foix, V. Viallet, V. Seznec, R. Dedryv'ere. Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study. Solid State Ionics 300, 78 (2017).

https://doi.org/10.1016/j.ssi.2016.11.029

S. Wenzel, S.J. Seldmaier, C. Dietrich, W.G. Zeier, J. Janek. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 318, 102 (2018).

https://doi.org/10.1016/j.ssi.2017.07.005

S. Yubuchi, M. Uematsu, C. Hotehama, A. Sakuda, A. Hayashi, M. Tatsumisago. An argyrodite sulfi de-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. J. Mater. Chem. A 7, 558 (2019).

https://doi.org/10.1039/C8TA09477B

Z. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, B. Wen. All-in-one improvement toward Li6PS−5Br-based solid electrolytes triggered by compositional tune. J. Power Sources 410-411, 162 (2019).

https://doi.org/10.1016/j.jpowsour.2018.11.016

I.P. Studenyak, A.I. Pogodin, V.I. Studenyak, O.P. Kokhan, Yu.M. Azhniuk, C. Cserhati, S. Kokenyesi,

D.R.T. Zahn. Synthesis and characterisation of new potassium-containing argyrodite-type compounds. Semiconductor Physics, Quantum Electronics & Optoelectronics 22, 34 (2019).

https://doi.org/10.15407/spqeo22.01.026

A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus, I.P. Studenyak, R.Yu. Buchuk, I.P. Prits, V.V. Panko. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics 180, 183 (2009).

https://doi.org/10.1016/j.ssi.2008.12.005

I.P. Studenyak, V.Yu. Izai, V.I. Studenyak, O.V. Kovalchuk, T.M. Kovalchuk, P. Kopcansk'y, M. Timko, N. Tomasovicov'a, V. Zavisova, J. Miskuf, I.V. Oleinikova. Influence of Cu6PS5Р† superionic nanoparticles on the dielectric properties of 6CB liquid crystal. Liquid Crystals 44, 897 (2017).

https://doi.org/10.1080/02678292.2016.1254288

T. Salkus, E. Kazakevicius, J. Banys, M. Kranjcec, A.A. Chomolyak, Yu.Yu. Neimet, I.P. Studenyak. Influence of grain size eff ect on electrical propertiesof Cu6PS5I superionic ceramics. Solid State Ionics 262, 597 (2014).

https://doi.org/10.1016/j.ssi.2013.10.040

I.P. Studenyak, M. Kranjcec, V.Yu. Izai, A.A. Chomolyak, M. Vorohta, V. Matolin, C. Cserhati, S. K¨ok'enyesi. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin fi lms. Thin Solid Films 520, 1729 (2012).

https://doi.org/10.1016/j.tsf.2011.08.043

I.P. Studenyak, M. Kranjcec, Gy.Sh. Kovacs, I.D. Desnica-Frankovic, A.A. Molnar, V.V. Panko, V.Yu. Slivka. Electrical and optical absoprtion studies of Cu7GeS5I fast-ion conductor. J. Phys. Chem. Solids 63, 267 (2002).

https://doi.org/10.1016/S0022-3697(01)00139-1

Y. Tomm, S. Schorr, S. Fiechter. Crystal growth of argyrodite-type phases Cu8−xGeS6−xIx and Cu8−xGeSe6−xIx (0 ≤ x ≤ 0.8). J. Cryst. Growth 310, 2215 (2008).

https://doi.org/10.1016/j.jcrysgro.2007.11.184

I.P. Studenyak, O.P. Kokhan, M. Kranjcec, V.V. Bilanchuk, V.V. Panko. Infl uence of S → Se substitution on chemical and physical properties of Cu7Ge(S1−xSex)5I superionic solid solutions. J. Phys. Chem. Solids 68 (2007), 1881 (2007).

https://doi.org/10.1016/j.jpcs.2007.05.015

I.P. Studenyak, M. Kranjˇcec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor. J. Phys. Chem. Solids 70, 1478 (2009).

https://doi.org/10.1016/j.jpcs.2009.09.003

I.P. Studenyak, M. Kranjcec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, A. Keˇzionis, E. Kazakevicius, T. Salkus. Tempe ature and compositional behaviour of electrical conductivity and optical absorption edge in Cu7Ge(S1−xSex)5I mixed superionic crystals. Solid State Ionics 181, 1596 (2010).

https://doi.org/10.1016/j.ssi.2010.09.021

I.P. Studenyak, A.I. Pogodin, O.P. Kokhan, V. Kavaliuke, T. Salkus, A. Kezionis, A.F. Orliukas. Crystal growth, structural and electrical properties of (Cu1−...Agx)7GeS5I superionic solid solutions. Solid State Ionics 329, 119 (2019).

https://doi.org/10.1016/j.ssi.2018.11.020

I.P. Studenyak, A.I. Pogodin, M.M. Luchynets, V.I. Studenyak, O.P. Kokhan, P. K'us. Impedance studies and electrical conductivity of (Cu1−xAgx)7GeSe5I mixed crystals. J. Alloys and Compounds 817, 152792 (2020).

https://doi.org/10.1016/j.jallcom.2019.152792

A. Zerouale, B. Cros, B. Deroide, M. Ribes. Electrical properties of Ag7GeSe5I. Solid State Ionics 28-30, 1317 (1988).

https://doi.org/10.1016/0167-2738(88)90378-5

R. Belin, A. Zerouale, A. Pradel, M. Ribes. Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra. Solid State Ionics 143, 445 (2001).

https://doi.org/10.1016/S0167-2738(01)00883-9

R. Belin, L. Aldon, A. Zerouale, C. Belin, M. Ribes. Crystal structure of the non-stoichiometric argyrodite compound Ag7−xGeSe5I1−x (x = 0.31), A highly disordered silver superionic conducting material. Solid State Sci. 3, 251 (2001). https://doi.org/10.1016/S1293-2558(00)01108-0

I.P. Studenyak, V.Yu. Izai, V.I. Studenyak, A.I. Pogodin, M.Y. Filep, O.P. Kokhan, B. Grancic, P. K'us. Interrelation between structural and optical properties of (Cu1−xAgx)7GeS5I mixed crystals. Ukr. J. Phys. Opt. 19, 237 (2018). https://doi.org/10.3116/16091833/19/4/237/2018

F. Oswald. Zur mebgenauigkeit bei der bestimmung der absorptionskonstanten von halble-itern im infraroten spektralbereich. Optik 16, 527 (1959).

T. Tinoco, M. Quintero, C. Rinkon. Variation of the energy gap with composition in AIBIIICVI2 chalcopyrite-structure alloys. Phys. Rev. B 44, 1613 (1991). https://doi.org/10.1103/PhysRevB.44.1613

A. Zunger, E. Jaff e. Structural origin of optical bowing in semiconductors alloys. Phys. Rev. Lett. 51, 662 (1983). https://doi.org/10.1103/PhysRevLett.51.662

E. Jaff e, A. Zunger. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B 29, 1882 (1984). https://doi.org/10.1103/PhysRevB.29.1882

F. Urbach. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92. 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

M.V. Kurik. Urbach rule (Review). Phys. Stat. Sol. (a) 8, 9 (1971). https://doi.org/10.1002/pssa.2210080102

Downloads

Published

2021-05-28

How to Cite

Pop, M., Studenyak, V., Pogodin, A., Kokhan, O., Suslikov, L., Studenyak, I., & Kúš, P. (2021). Optical Properties of Cation-Substituted (Cu1 – xAgx)7GeSe5I Mixed Crystals. Ukrainian Journal of Physics, 66(5), 406. https://doi.org/10.15407/ujpe66.5.406

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)