Вплив полів на вході у порожнину на некласичні властивості імпульсного каскадного лазера

Автор(и)

  • S. Eshete Department of Physics, Debre Tabor University

DOI:

https://doi.org/10.15407/ujpe67.1.34

Ключові слова:

суперпуассонiвський, стиснутий стан, квантовi властивостi, взаємодiя свiтла iз речовиною

Анотація

Дослiджуються квантовi i статистичнi властивостi моди випромiнювання порожнини когерентного виродженого трирiвневого лазера iз застосуванням стандартних методiв квантової електродинамiки та з урахуванням взаємодiї випромiнювання iз речовиною. Розглянуто вакуумну, стиснуту вакуумну та термальну порожнини для того, щоб визначити вплив полiв на входi порожнини на статистичнi властивостi i природу стиснення випромiнювання з неї. Встановлено, що для стиснутої вакуумної порожнини вплив на стискування та на яскравiсть випромiнювання найбiльшi порiвняно з вакуумною та термальною порожнинами. Знайдено також, що випромiнювання iз порожнини знаходиться в стиснутому станi з суперпуассонiвською статистикою фотонiв незалежно вiд типу порожнини.

Посилання

H. de Riedmatten, M. Afzelius, M. Staudt, C. Simon, N. Gisin. A solid-state light-matter interface at the singlephoton level. Nature 456, 773 (2008).

https://doi.org/10.1038/nature07607

Q. Bin, Lu, L. Zheng, S. Bin, Y. Wu. Detection of lightmatter interaction in the weak-coupling regime by quantum light. Phys. Rev. A 97, 043802 (2018).

https://doi.org/10.1103/PhysRevA.97.043802

C. Wu, T. Wu, Y. Yeh, P. Liu, C. Chang, C. Liu, T. Cheng, C. Chuu. Bright single photons for light-matter interaction. Phys. Rev. A 96, 023811 (2017).

https://doi.org/10.1103/PhysRevA.96.023811

A. Barfuss, J. Kolb, L. Thiel, J. Teissier, M. Kasperczyk, P. Maletinsky. Phase-controlled coherent dynamics of a single spin under closed-contour interaction. Nat. Phys. 14, 1087 (2018).

https://doi.org/10.1038/s41567-018-0231-8

T. Galfskya, J. Gua, E.E. Narimanov, V.M. Menon. Photonic hypercrystals for control of light-matter interactions. PNAS 114, 5125 (2017).

https://doi.org/10.1073/pnas.1702683114

G. Gunter, A.A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber. Sub-cycle switch-on of ultrastrong light-matter interaction. Nature 458, 178 (2009).

https://doi.org/10.1038/nature07838

M.O. Scully. Correlated spontaneous emission Lasers: quenching of quantum fluctuations in the relative phase angle. Phys. Rev. Lett. 55, 2802 (1985).

https://doi.org/10.1103/PhysRevLett.55.2802

A.S. Manka, H.M. Doss, L.M. Narducci, P. Ru, G.-L. Oppo. Spontaneous emission and absorption properties of a driven three-level system: The Λ and cascade models. Phys. Rev. A 43, 3748 (1991).

https://doi.org/10.1103/PhysRevA.43.3748

Ying Wu, Xiaoxue Yang. Effective two-level model for a three-level atom in the Ξ configuration. Phys. Rev. A 56, 2443 (1997).

https://doi.org/10.1103/PhysRevA.56.2443

H. Wang, D. Goorskey, M. Xiao. Bistability and instability of three-level atoms inside an optical cavity. Phys. Rev. A 65, 011801 (2001).

https://doi.org/10.1103/PhysRevA.65.011801

A. Joshi, A. Brown, H. Wang, M. Xiao. Controlling optical bistability in a three-level atomic system. Phys. Rev. A 67, 041801 (2003).

https://doi.org/10.1103/PhysRevA.67.041801

A. Joshi, W. Yang, M. Xiao. Effect of quantum interference on optical bistability in the three-level V-type atomic system. Phys. Rev. A 68, 015806 (2003).

https://doi.org/10.1103/PhysRevA.68.015806

A. Joshi, M. Xiao. Optical multistability in three-level atoms inside an optical ring cavity. Phys. Rev. Lett. 91, 143904 (2003).

https://doi.org/10.1103/PhysRevLett.91.143904

L.V. Doai, D.X. Khoa, N.H. Bang. EIT enhanced selfKerr nonlinearity in the three-level lambda system under Doppler broadening. Phys. Scr. 90, 045502 (2015).

https://doi.org/10.1088/0031-8949/90/4/045502

M.J. Faghihi1, M.K. Tavassoly. Quantum entanglement and position-momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a singlemode quantized field with intensity-dependent coupling. J. Phys. B: At. Mol. Opt. Phys. 46, 145506 (2013).

https://doi.org/10.1088/0953-4075/46/14/145506

M.R. Ferguson, Z. Ficek, B.J. Dalton. Effect of a squeezed vacuum on coherent population trapping in a three-level lambda system. J. Mod. Opt. 42, 679 (1995).

https://doi.org/10.1080/09500349514550621

H. Ting, L. Xiu-Min, C. Zhuo-Liang, G. Guang-Can. Dynamic behavior of lambda-type three-Level atoms and twomode cavity field. Commun. Theor. Phys. 45, 712 (2006).

https://doi.org/10.1088/0253-6102/45/4/028

X.Q. Jiang, X.D. Sun. Spontaneous emission of a threelevel lambda-type atom coupled to separate reservoirs. Opt. Commun. 282, 922 (2009).

https://doi.org/10.1016/j.optcom.2008.11.003

A.-B.A. Mohamed1, H. Eleuch. Coherence and information dynamics of a Lambda-type three-level atom interacting with a damped cavity field. Eur. Phys. J. Plus 132, 75 (2017).

https://doi.org/10.1140/epjp/i2017-11360-9

M. Yamanishi. Theory of intrinsic linewidth based on fluctuation-dissipation balance for thermal photons in THz quantum-cascade lasers.Opt. Express 20, 28466 (2012).

https://doi.org/10.1364/OE.20.028465

B. Parvin, R. Malekfar. Two different regimes in a V-type three-level atom trapped in an optical cavity. J. Mod. Phys. 59, 848 (2012).

https://doi.org/10.1080/09500340.2012.676096

F. Carreno, O.G. Calderon, M.A. Anton, I. Gonzalo. Superluminal and slow light in lambda-type three-level atoms via squeezed vacuum and spontaneously. Phys. Rev. A 71, 063805 (2005).

https://doi.org/10.1103/PhysRevA.71.063805

S. Tesfa. Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816 (2006).

https://doi.org/10.1103/PhysRevA.74.043816

X.D. Sun, X.Q. Jiang, J.H. Wu, C.F. Hou. Decay properties of a three-level lambda-type atom in three-dimensional photonic crystals. J. Phys. B: At. Mol. Opt. Phys. 40, 1645 (2007).

https://doi.org/10.1088/0953-4075/40/10/001

S. Tesfa. Effects of decoherence on entanglement in a correlated emission laser. J. Phys. B: At. Mol. Opt. Phys. 40, 2373 (2007).

https://doi.org/10.1088/0953-4075/40/12/013

E. Alebachew. Enhanced squeezing and entanglement in a non-degenerate three-level cascade laser with injected squeezed light. Opt. Commun. 280, 133 (2007).

https://doi.org/10.1016/j.optcom.2007.08.017

E. Alebachew. Bright entangled light from two-mode cascade laser. Opt. Commun. 281, 6124 (2008).

https://doi.org/10.1016/j.optcom.2008.08.052

T. Abebe, N. Gemechu, C. Gashu, K. Shogile, S. Hailemariam, S. Adisu. The quantum analysis of nonlinear optical parametric processes with thermal reservoirs. Int. J. Opt. 2020, 1 (2020).

https://doi.org/10.1155/2020/7198091

S. Eshete. Quantum enhancement of the optical behavior for V-type open atomic system. Physics Open 9, 100076 (2021).

https://doi.org/10.1016/j.physo.2021.100076

S. Eshete. The role of phase-dependent atomic coherence on refractive index of atomic medium for energy harvesting systems. Int. J. Theor. Phys. 60, 2283 (2021).

https://doi.org/10.1007/s10773-021-04848-3

C.W. Gardiner. Quantum Noise, Vol. 1, 3rd Edition (Springer-Verlag, 1991) [ISBN: 3-540-22301-0].

https://doi.org/10.1007/978-3-662-09642-0

W. Zhang, P.L. Chu. Sub-Poissonian and super-Poissonian photon statistics in a twin-core doped optical fiber. IEEE J. Quant. Elect. 30, 2836 (1994).

https://doi.org/10.1109/3.362726

B. Ann, Y. Song, J. Kim, D. Yang, K. An. Observation of scalable sub-Poissonian-field lasing in a microlaser. Sci. Rep. 9, 17110 (2019).

https://doi.org/10.1038/s41598-019-53525-3

Y. He, E. Barkai. Super- and sub-Poissonian photon statistics for single molecule spectroscopy. J. Chem. Phys. 122, 184703 (2005).

https://doi.org/10.1063/1.1888388

H. Prakash, D.K. Mishra. Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing and amplitude-squared squeezing. J. Phys. B: At. Mol. Opt. Phys. 39, 2291 (2006).

https://doi.org/10.1088/0953-4075/39/9/014

C.L. Alzar, L.S. Cruz, J.G. Gomez, M.F. Santos, P. Nussenzveig. Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagnetically induced transparency. Europhys. Lett. 61, 485 (2003).

https://doi.org/10.1209/epl/i2003-00155-0

Downloads

Опубліковано

2022-02-11

Як цитувати

Eshete, S. (2022). Вплив полів на вході у порожнину на некласичні властивості імпульсного каскадного лазера. Український фізичний журнал, 67(1), 34. https://doi.org/10.15407/ujpe67.1.34

Номер

Розділ

Оптика, атоми і молекули