Магнiтно модифiкованi електроспінінгові нановолокна для гiпертермiї

Автор(и)

  • M. Molcan Department of Magnetism, Institute of Experimental Physics, SAS
  • I. Safarik Department of Magnetism, Institute of Experimental Physics, SAS, Department of Nanobiotechnology, Biology Centre, ISB, CAS, Regional Centre of Advanced Technologies and Materials, Palacky University
  • K. Pospiskova Regional Centre of Advanced Technologies and Materials, Palacky University
  • K. Paulovicova Department of Magnetism, Institute of Experimental Physics, SAS
  • M. Timko Department of Magnetism, Institute of Experimental Physics, SAS
  • P. Kopcansky Department of Magnetism, Institute of Experimental Physics, SAS
  • N. Torma Vascular Clinic IMEA

DOI:

https://doi.org/10.15407/ujpe65.8.655

Ключові слова:

electrospinning, magnetic fluid, polyvinyl butyral, alternating magnetic field, hyperthermia

Анотація

Iснує кiлька методологiй приготування нановолокнистих матерiалiв. Наразi електроспiнiнг є найпопулярнiшою технiкою завдяки своїй унiверсальностi та простотi. Нановолокнистi матерiали, виготовленi таким чином, широко вивчаються в медицинi та матерiалознавствi. Полiвiнiлбутиральнi (PVB) нановолокна генеруються спiнiнговим електродом у формi стрижня. Нановолокна були модифiкованi магнiтною рiдиною (MF), доданою в розчин PVB. Цi магнiтнi нановолокна можна застосовувати в магнiтнiй гiпертермiї як iмплантат, так i для нагрiвання поверхнi. Зразки з рiзними концентрацiями магнiтних частинок були тестованi в змiнному магнiтному полi. Спостерiгалося рiзке пiдвищення температури пiсля увiмкнення поля. Природа пiдвищення температури цiкава: можна спостерiгати нелiнiйне збiльшення на противагу вiд пiдвищення температури у випадку чистої магнiтної рiдини.

Посилання

I. Savva, T. Krasia-Christoforou. Electrospun magnetoactive fibrous nanocomposites: Fabrication and applications in biomedicine. In: Magnetic Nanoparticles: Synthesis, Physicochemical Properties and Role in Biomedicine. Edited by N.P. Sabba. (Nova Science Publishers, 2014) [ISBN: 978-1-63117-434-6].

T. Blachowicz, A. Ehrmann. Most recent developments in electrospun magnetic nanofibers: A review. J. Eng. Fibers Fabr. 15, in press (2020). https://doi.org/10.1177/1558925019900843

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, M.V. Avdeev. Small-angle scattering in structural research of nanodiamond dispersions. In: Modern Problems of the Physics of Liquid Systems. Edited by L.A. Bulavin, L. Xu (Springer, 2019) [ISBN: 978-3-030-21754-9]. https://doi.org/10.1007/978-3-030-21755-6_8

A.V. Nagornyi, M.V. Avdeev, O.V. Yelenich, S.O. Solopan, A.G. Belous, A.V. Shulenina, V.A. Turchenko, D.V. Soloviov, L.A. Bulavin, V.L. Aksenov. Structural aspects of Fe3O4/CoFe2O4 magnetic nanoparticles according to X-ray and neutron scattering. J. Surf. Invest.-X-Ray+ 12, 737 (2018). https://doi.org/10.1134/S102745101804033X

A. Nagornyi, L. Bulavin, V. Petrenko, M. Avdeev, V. Aksenov. Sensitivity of small-angle neutron scattering method at determining the structural parameters in magnetic fluids with low magnetite concentrations. Ukr. J. Phys. 58, 735 (2013).

R. Faridi-Majidi, N. Sharifi-Sanjani. In situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through an electrospinning process. J. Appl. Polym. Sci. 105, 1351 (2007). https://doi.org/10.1002/app.26230

J. Prochazkova, K. Pospiskova, I. Safarik. Magnetically modified electrospun nanotextile exhibiting peroxidase-like activity. J. Magn. Magn. Mater. 473, 335 (2019). https://doi.org/10.1016/j.jmmm.2018.10.106

I. Safarik, K. Pospiskova, E. Baldikova, I. Savva, L. Vekas, O. Marinica, E. Tanasa, T. Krasia-Christoforou. Fabrication and bioapplications of magnetically modified chitosan-based electrospun nanofibers. Electrospinning 2, 29 (2018). https://doi.org/10.1515/esp-2018-0003

T.C. Lin, F.H. Lin, J.C. Lin. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater. 8, 2704 (2012). https://doi.org/10.1016/j.actbio.2012.03.045

P.Y. Hu, Y.T. Zhao, J. Zhang, S.X. Yu, J.S. Yan, X.X. Wang, M.Z. Hu, H.F. Xiang, Y.Z. Long. In situ melt electrospun polycaprolactone/Fe3O4 nanofibers for magnetic hyperthermia. Mater. Sci. Eng. C 110, 110708 (2020). https://doi.org/10.1016/j.msec.2020.110708

S. Chen, S.K. Boda, S.K. Batra, X. Li, J. Xie. Emerging roles of electrospun nanofibers in cancer research. Adv. Healthc. Mater. 7, 1701024 (2018). https://doi.org/10.1002/adhm.201701024

R. Contreras-Caceres, L. Cabeza, G. Perazzoli, A. Diaz, J.M. Lopez-Romero, C. Melguizo, J. Prados. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials 9, 656 (2019). https://doi.org/10.3390/nano9040656

C.B. Huang, S.J. Soenen, J. Rejman, J. Trekker, C.X. Liu, L. Lagae, W. Ceelen, C. Wilhelm, J. Demeester, S.C. De Smedt. Magnetic electrospun fibers for cancer therapy. Adv. Funct. Mater. 22, 2479 (2012). https://doi.org/10.1002/adfm.201102171

K. Kaczmarek, R. Mr'owczy'nski, T. Hornowski, R. Bielas, A. J'ozefczak. The effect of tissue-mimicking phantom compressibility on magnetic hyperthermia, Nanomaterials 9 (5), 803 (2019). https://doi.org/10.3390/nano9050803

A. J'ozefczak, B. Leszczy'nski, A. Skumiel, T. Hornowski. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions, J. Magn. Magn. Matter. 407, 92 (2016). https://doi.org/10.1016/j.jmmm.2016.01.054

A. Skumiel, T. Hornowski, A. J'ozefczak, M. Koralewski, B. Leszczy'nski. Uses and limitation of different thermometers for measuring heating efficiency of magnetic fluids, Appl. Therm. Eng. 100, 1308 (2016). https://doi.org/10.1016/j.applthermaleng.2016.02.063

A. Amarjargal, L.D. Tijing, C.-H. Park, I.-T. Im, C.S. Kim. Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: A novel heat-generating substrate for magnetic hyperthermia application. Eur. Polym. J. 49, 3796 (2013). https://doi.org/10.1016/j.eurpolymj.2013.08.026

Y.-J. Kim, M. Ebara, T. Aoyagi. A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv. Funct. Mater. 23, 5753 (2013). https://doi.org/10.1002/adfm.201300746

A.R.K. Sasikala, A.R. Unnithan, Y.-H. Yun, C.H. Park, C.S. Kim. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater. 31, 122 (2016). https://doi.org/10.1016/j.actbio.2015.12.015

C. Song, X.X. Wang, J. Zhang, G.D. Nie, W.L. Luo, J. Fu, S. Ramakrishna, Y.Z. Long. Electric field-assisted in situ precise deposition of electrospun y-Fe2O3/polyurethane nanofibers for magnetic hyperthermia. Nanoscale Res. Lett. 13, 273 (2018). https://doi.org/10.1186/s11671-018-2707-y

L. Polakova, J. Sirc, R. Hobzova, A.I. Cocar¸ta, E. Hermankova. Electrospun nanofibers for local anticancer therapy: Review of in vivo activity. Int. J. Pharm. 558, 268 (2019). https://doi.org/10.1016/j.ijpharm.2018.12.059

F. Yener, B. Yalcinkaya. Electrospinning of polyvinyl butyral in different solvents. e-Polymers 13, 021 (2013). https://doi.org/10.1515/epoly-2013-0121

P. Pokorny, E. Kostakova, F. Sanetrnik, P. Mikes, J. Chvojka, T. Kalous, M. Bilek, K. Pejchar, J. Valtera, D. Lukas. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys. 16, 26816 (2014). https://doi.org/10.1039/C4CP04346D

L. Vekas, D. Bica, M.V. Avdeev. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications. China Particuol. 5, 43 (2017). https://doi.org/10.1016/j.cpart.2007.01.015

M. Rajnak, Z. Wu, B. Dolnik, K. Paulovicova, J. Tothova, R. Cimbala, J. Kurimsky, P. Kopcansky, B. Sunden, L. Wadso, M. Timko. Magnetic field effect on thermal, dielectric, and viscous properties of a transformer oil-based magnetic nanofluid. Energies 12, 4532 (2019). https://doi.org/10.3390/en12234532

S. Odenbach. Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, 2009) [ISBN: 978-3-540-85386-2]. https://doi.org/10.1007/978-3-540-85387-9

M. Rajnak, Z. Spitalsky, B. Dolnik, J. Kurimsky, L. Tomco, R. Cimbala, P. Kopcansky, M. Timko. Toward apparent negative permittivity measurement in a magnetic nanofluid with electrically induced clusters. Phys. Rev. Applied 11, 024032 (2019). https://doi.org/10.1103/PhysRevApplied.11.024032

W. Chen, S. Morup, M.F. Hansen, T. Banert, U.A. Peuker. A Mossbauer study of the chemical stability of iron oxide nanoparticles in PMMA and PVB beads. J. Magn. Magn. Mater. 320, 2099 (2008). https://doi.org/10.1016/j.jmmm.2008.03.031

D. Posavec, A. Dorsch, U. Bogner, G. Bernhardt, S. Nagl. Polyvinyl butyral nanobeads: preparation, characterization, biocompatibility and cancer cell uptake. Microchim. Acta 173, 391 (2011). https://doi.org/10.1007/s00604-011-0573-8

S. Dutz, R. Hergt. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy, Int. J. Hyperthermia 29, 790 (2013). https://doi.org/10.3109/02656736.2013.822993

M. Babiˇc, D. Hor'ak, M. Molˇcan, M. Timko. Heat generation of surface-modified magnetic y-Fe2O3 nanoparticles in applied alternating magnetic field. J. Phys. D 50 (34), Article No. 345002 (2017). https://doi.org/10.1088/1361-6463/aa7bcb

Downloads

Опубліковано

2020-07-30

Як цитувати

Molcan, M., Safarik, I., Pospiskova, K., Paulovicova, K., Timko, M., Kopcansky, P., & Torma, N. (2020). Магнiтно модифiкованi електроспінінгові нановолокна для гiпертермiї. Український фізичний журнал, 65(8), 655. https://doi.org/10.15407/ujpe65.8.655

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика

Статті цього автора (авторів), які найбільше читають