Вивчення H2CO•••HF комплексу сучасними методами квантової механіки

Автор(и)

  • A. Amonov Samarkand State University, Department of Physics
  • G. Murodov Samarkand State University, Department of Physics
  • K. G. Tokhadze Saint Petersburg State University, Department of Physics
  • A. Jumabaev Samarkand State University, Department of Physics
  • G. Nurmurodova Samarkand State University, Department of Physics

DOI:

https://doi.org/10.15407/ujpe65.4.304

Ключові слова:

-

Анотація

Виходячи з перших принципiв, виконано розрахунки рiвноважних структур, енергiї зв’язку i частоти гармонiйних i ангармонiчних коливань комплексу з водневими зв’язками, утвореного формальдегiдом H2CO i фтористим воднем HF. Використано пакет програм Gaussian 09 з повним базисом 6311++G(3df, 3pd) у другому порядку теорiї збурень i методи CCSD(T). Частоти та iнтенсивностi коливань розраховано з пакетом програм Gaussian 16 в тому самому наближеннi. Знайдено змiни геометрiї i зсуви частот при утвореннi комплексу. Енергiя утворення комплексу i дипольний момент знайденi в CCSD(T)6311++G(3df, 3pd) наближеннi та є рiвними, вiдповiдно, 7,78 ккал/моль i 4,2 Д. Змiни геометричних, спектральних i енергетичних параметрiв свiдчать про наявнiсть стабiльного водневого зв’язку F–H···O=CHмiж компонентами.

Посилання

V.P. Bulychev, K.G. Tokhadze. Vibrational spectroscopy determination of mechanisms of the v1(H-F) band shape formation in the absorption spectra of H-bonded complexes of HF from combined experimental studies and nonempirical calculations. Vibrational Spectroscopy 73, 1 (2014). https://doi.org/10.1016/j.vibspec.2014.03.009

V.P. Bulychev, A.M. Koshevarnikov, K.G. Tokhadze. The structure and vibrational spectral parameter of a complex of HF with the planer (H2CO)2 dimer. Optics and Spectroscopy 122, 851 (2017). https://doi.org/10.1134/S0030400X17060042

P. Golub, I. Doroshenko, V. Pogorelov. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols. Phys. Lett. A 378, 1937 (2014). https://doi.org/10.1016/j.physleta.2014.04.032

E.N. Kozlovskaya, I. Doroshenko, V. Pogorelov, Ye. Vaskivsky, G.A.Pitsevich. Comparison of degrees of potential-energy-surface anharmonicity for complexes and clusters with hydrogen bonds. J. Appl. Spectr. 84, 929 (2018). https://doi.org/10.1007/s10812-018-0567-y

A. Nowek, J. Leszczyсski. Ab initio investigation on stability and properties of XYCO· · ·HZ complexes. II: Post Hartree-Fock studies on H2CO···HF. Struct. Chem. 6, 255 (1995). https://doi.org/10.1007/BF02293118

R.M. Minyaev, A.G. Starikov, E.A. Lepin. Pathways of the reactions of nucleophilic addition of H2O and HF molecules to formaldehyde in the gas phase and in the complex with formic acid: ab initio calculations. Russ. Chem. Bull. 47, 2078 (1998). https://doi.org/10.1007/BF02494259

R. Li, Zh. Li, D. Wu, X. Hao, R. Li, Ch. Sun. Long-range п-type hydrogen bond in the dimers CH2O-HF, CH2O-H2O, and CH2O-NH3. Int. J. Quantum Chem. 103, 299 (2005). https://doi.org/10.1002/qua.20507

F.A. Baiocchi,W. Klemperer. The rotational and hyperfine spectrum and structure of H2CO-HF2. J. Chem. Phys. 78, 3509 (1983). https://doi.org/10.1063/1.445174

F.J. Lovas, R.D. Suenram, S. Ross, M. Klobukowski. Rotational, structural, ab initio, and semirigid bender analysis of the millimeter wave spectrum of H2CO-HF. J. Mol. Spectrosc. 123, 167 (1987). https://doi.org/10.1016/0022-2852(87)90269-4

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. Gaussian 09 (Gaussian, 2009), Revision A.02.

S.-Jun Yoon, SooYang Park. Polymorphic and mechanochromic luminescence modulation in the highly emissive dicyanodistyrylbenzene crystal: Secondary bonding interaction in molecular stacking assembly. J. Mater. Chem. 21, 8338 (2011). https://doi.org/10.1039/c0jm03711g

Alfred Karpfen, Eugene S. Kryachko. Strongly blue-shifted C-H stretches:? Interaction of formaldehyde with hydrogen fluoride clusters. J. Phys. Chem. A 109, 8930 (2005). https://doi.org/10.1021/jp050408o

P. Hobza, V. Sypirko, H.L. Selzle, W.E. Schlag. Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J. Phys. Chem. A 102, 2501 (1998). https://doi.org/10.1021/jp973374w

R. Gopi, N. Ramanathan, K. Sundararajan. Blue-shift of the C-H stretching vibration in CHF3-H2O complex: Matrix isolation infrared spectroscopy and ab initio computations. J. Chem. Phys. 476, 36 (2016). https://doi.org/10.1016/j.chemphys.2016.07.016

R.E. Asfin, S.M. Melikova, K.S. Rutkowski. The infrared study of fluoroform+methyl fluoride mixtures in argon and nitrogen matrices. Evidence of nonlinear blue-shifting complex formation. Spectrochim. Acta Part A: Molec. Biomolec. Spectr. 203, 185 (2018). https://doi.org/10.1016/j.saa.2018.05.105

R. Gopi, N. Ramanathan, K. Sundararajan. Experimental evidence for blue-shifted hydrogen bonding in the fluoroform-hydrogen chloride complex: A matrix-isolation infrared and ab initio study. J. Phys. Chem. A 118, 5529 (2014). https://doi.org/10.1021/jp503718v

K. Hermansson. Blue-shifting hydrogen bonds. J. Phys. Chem. A 106, 4695 (2002). https://doi.org/10.1021/jp0143948

G.R. Desiraju, T. Steiner. The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford Univ. Press, 1999) [ISBN-13: 978-0198509707].

S. Scheiner. Hydrogen Bonding: A Theoretical Perspective (Oxford Univ. Press, 1997) [ISBN-13: 978-0195090116].

Sharon G. Lias, Joel F. Liebman, Rhoda D. Levin. Evaluated gas phase basicities and proton affinities of molecules; heats of formation of protonated molecules. J. Phys. Chem. Ref. Data. 13, 695 (1984). https://doi.org/10.1063/1.555719

E.P.L. Hunter, S.G. Lias. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update (American Institute of Physics and American chemical Society, 1998) [ISBN: S0047-2689(98)00203-7]. https://doi.org/10.1063/1.556018

S.F. Boys, F. Bernardi. The calculations of small molecular interaction by the difference of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553 (1970). https://doi.org/10.1080/00268977000101561

Downloads

Опубліковано

2020-04-17

Як цитувати

Amonov, A., Murodov, G., Tokhadze, K. G., Jumabaev, A., & Nurmurodova, G. (2020). Вивчення H2CO•••HF комплексу сучасними методами квантової механіки. Український фізичний журнал, 65(4), 304. https://doi.org/10.15407/ujpe65.4.304

Номер

Розділ

Оптика, атоми і молекули

Статті цього автора (авторів), які найбільше читають