Inelastic Processes of Electron Interaction with Chalcogens in the Gaseous Phase (a Review)

Authors

  • O. Shpenik Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • A. Zavilopulo Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • E. Remeta Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • S. Demes Institute for Nuclear Research (MTA Atomki), Hungarian Academy of Sciences
  • M. Erdevdy Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.7.557

Keywords:

chalcogens, mass spectrometry method, ionic fragments, dissociative ionization, optical spectroscopy method

Abstract

Complex research of elementary pair collision processes occurring when low-energy (0–70 eV) electrons pass through chalcogen (S, Se, Te) vapor has been carried out in the evaporation temperature intervals of those elements (T = 320÷700 K for sulfur, 420÷490 K for selenium, and 400÷600 K for tellurium). The vapor compositions of indicated elements are studied using the mass spectroscopy method. The radiation spectra are analyzed in the wavelength interval from 200 to 600 nm with the help of optical spectroscopy. Using highly monoenergetic electron beams, the total (integral) formation cross-sections for positive and negative S, Se, and Te ions are measured. It is found that, under the experimental conditions, the main components of chalcogen vapor are molecules containing 2 to 8 atoms. At the energies of bombarding electrons below 10 eV, the emission spectra mainly consist of bands of diatomic molecules, and, at higher energies (E > 15 eV), there appear separate atomic and ionic lines. At E = 50 eV, the lines of singly charged ions are the most intense ones. It is shown that the most effective reaction channel is the interaction of electrons with diatomic molecules of indicated elements, whereas other processes are mainly associated with the decay of polyatomic molecules. The excitation and ionization thresholds for interaction products are found by analyzing the energy dependences of process characteristics. Specific features are also observed in the energy dependences of the excitation and ionization functions. Doubly charged ions of diatomic sulfur molecules, as well as selenium and tellurium atoms, are revealed for the first time. The appearance of triply charged ions of diatomic sulfur molecules is also detected. The main contribution to the total (integral) effective ionization cross-section of both positive and negative ions is proved to be made by the interaction processes of electrons with diatomic molecules S2, Se2, and Te2. Besides the experimental research, a detailed theoretical study is carried out. Calculations with a theoretical analysis of their results are performed for the structural characteristics of homoatomic sulfur, Sn, selenium, Sen, and tellurium, Ten, molecules with n = 2÷8; namely, interatomic distances, ionization potentials, electron affinity energies, and dissociation energies. The energy characteristics are applied to calculate the appearance energies for singly and doubly charged ionic fragments of those molecules at the dissociative ionization. The obtained results are carefully compared with the available experimental and theoretical data.

References

J.H. Gross. Mass Spectrometry: A Textbook (Springer, 2011). https://doi.org/10.1007/978-3-642-10711-5

A.N. Zavilopulo, A.S. Agafonova, A.V. Snegurskii. Electron impact-induced ionization and dissociation of the freon-12 molecule. Techn. Phys. 55, 1735 (2010). https://doi.org/10.1134/S1063784210120042

A.N. Zavilopulo, O.B. Shpenik, O.V. Pilipchinets. Mass spectrometry of a xylitol molecule. Techn. Phys. 64, 8 (2019). https://doi.org/10.1134/S1063784219010274

A.N. Zavilopulo, F.F. Chipev, O.B. Shpenik. Ionization of nitrogen, oxygen, water, and carbon dioxide molecules by near-threshold electron impact. Techn. Phys. 50, 402 (2005). https://doi.org/10.1134/1.1901776

L.M. Feaga, M.A. McGrath, P.D. Feldman. The abundance of atomic sulfur in the atmosphere of Io, Astrophys. J. 570, 439 (2002). https://doi.org/10.1086/339500

J. Berkovitz, J.R. Marquart. Equilibrium composition of sulfur vapor. J. Chem. Phys. 39, 275 (1963). https://doi.org/10.1063/1.1734241

M. Harnisch, N. Weinberger, S. Denifl, P. Scheier, O. Echt. Helium droplets doped with sulfur and C60. J. Phys. Chem. C 119, 10919 (2015). https://doi.org/10.1021/jp510870x

E. R¨uhl. Core level excitation, ionization, relaxation, and fragmentation of free clusters. Int. J. Mass Spectrom. Ion Phys. 229, 117 (2003). https://doi.org/10.1016/j.ijms.2003.08.006

W. Rosinger, M. Grade, W. Hirschwald. Electron impact induced excitation processes involving the sulfur clusters S2 to S8. Ber. Bunsen. Phys. Chem. 87, 536 (1983). https://doi.org/10.1002/bbpc.19830870616

H.P. Saha, D. Lin. Ab initio calculation for low-energy elastic scattering of electrons from sulfur atoms. Phys. Rev. A 56, 1897 (1997). https://doi.org/10.1103/PhysRevA.56.1897

O. Zatsarinny, S.S. Tayal. Low-energy electron collisions with atomic sulfur: R-matrix calculation with non-orthogonal orbitals. J. Phys. B 34, 3383 (2001). https://doi.org/10.1088/0953-4075/34/17/303

H. Murai, Y. Ishijima, T. Mitsumura, Y. Sakamoto, H. Kato, M. Hoshino, F. Blanco, G. Garc'ıa, P. Lim˜ao-Vieira, M.J. Brunger, S.J. Buckman, H. Tanaka. A comprehensive and comparative study of elastic electron scattering from OCS and CS2 in the energy region from 1.2 to 200 eV. J. Chem. Phys. 138, 054302 (2013). https://doi.org/10.1063/1.4788666

C. Winstead, P.G. Hipes, M.A.P. Lima, V. McKoy. Studies of electron collisions with polyatomic molecules using distributed-memory parallel computers. J. Chem. Phys. 94, 5455 (1991). https://doi.org/10.1063/1.460480

S. Kaur, A. Bharadvaja, K.L. Baluja. Electron-impact study of S3 using the R-matrix method. Phys. Rev. A 83, 062707 (2011). https://doi.org/10.1103/PhysRevA.83.062707

N. Greenwood, A. Earnshaw. Chemistry of the Elements (Butterworth-Heinemann, 1997).

Z.J. Becker. Elemental Selenium. In Chemical Thermodynamics of Selenium. Edited by F.J. Mompean, J. Perrone, M. Illemass'ene (Elsevier, 2010), ch. V.1.

L.G. Johansson, E. Gafvelin, J. Am'er. Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta 1726, 1 (2005). https://doi.org/10.1016/j.bbagen.2005.05.010

NIST Standard Reference Database. http://www.webbook.nist.gov.

G. Audi, A.H. Wapstra, C. Thibault. The AME2003 (NUBASE) atomic mass evaluation (II). Tables, graphs, and references. Nucl. Phys. A 729, 3 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.002

R. Viswanathan, R. Balasubramanian, D. Raj, D. Albert, B.M. Sai, N.T.S. Lakshmi. Vaporization studies on elemental tellurium and selenium by Knudsen effusion mass spectrometry. J. Alloy. Compd. 603, 75 (2014). https://doi.org/10.1016/j.jallcom.2014.03.040

E. Illenberger, J. Momigny. Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization (Springer, 1992). https://doi.org/10.1007/978-3-662-07383-4

Advanced Topics in Theoretical Chemical Physics. Edited by J. Maruani, R. Lefebvre, E.J. Br¨andas (Kluwer, 2003).

J.H. Gross. Principles of ionization and ion dissociation. In J.H. Gross. Mass Spectrometry (Springer, 2011), p. 21. https://doi.org/10.1007/978-3-642-10711-5_2

Z.J. Becker, K. Rademann, F. Hensel. Ultraviolet photoelectron studies of the molecules Se5, Se6, Se7 and Se8 with relevance to their geometrical structure. Z. Phys. D 19, 229 (1991). https://doi.org/10.1007/978-3-642-76178-2_56

A.N. Zavilopulo, O.B. Shpenik, A.M. Mylymko. Examination of a molecular Se beam by mass spectrometry with electron ionization. Techn. Phys. 62, 359 (2017). https://doi.org/10.1134/S106378421703029X

G. Gantef¨or, S. Hunsicker, R.O. Jones. Prediction and observation of ring and chain isomers in Sn− ions. Chem. Phys. Lett. 236, 43 (1995). https://doi.org/10.1016/0009-2614(95)00206-J

O.B. Shpenik, A.N. Zavilopulo, O.V. Pylypchynets. Electron impact ionization of tellurium in the gas phase. Dopov. Nat. Akad. Nauk Ukr. No. 5, 44 (2018) (in Ukrainian). https://doi.org/10.15407/dopovidi2018.05.044

A.N. Zavilopulo, M.I. Mykyta, A.N. Mylymko, O.B. Shpenik. Ionization and dissociative ionization of methane molecules. Techn. Phys. 58, 1251 (2013). https://doi.org/10.1134/S1063784213090272

A.N. Zavilopulo, O.B. Shpenik, A.S. Agafonova. Electron impact ionization of gas-phase guanine near the threshold. J. Phys. B 42, 1 (2009). https://doi.org/10.1088/0953-4075/42/2/025101

J.E. Kontros, L. Sz'ot'er, I.V. Chernyshova O.B. Shpenik. Cross-sections of slow electron scattering by cadmium atoms. J. Phys. B 35, 2195 (2002). https://doi.org/10.1088/0953-4075/35/10/301

N.M. Erdevdy, O.B. Shpenik, P.P. Markush. Electron-impact excitation of gas-phase sulfur. J. Appl. Spectrosc. 82, 19 (2015). https://doi.org/10.1007/s10812-015-0058-3

A.N. Zavilopulo, E.A. Mironets, A.S. Agafonova. An upgraded ion source for a mass spectrometer. Instrum. Experim. Techn. 55, 65 (2012). https://doi.org/10.1134/S0020441211060315

G. Dudek, E.P. Dudek. The mass spectrum of sulfur. J. Chem. Educ. 66, 304 (1989). https://doi.org/10.1021/ed066p304

P. Bradt, F.L. Mohler, V.H. Dibeler. Mass spectrum of sulfur vapor. J. Res. Nat. Bur. Stand. 57, No. 4, 223 (1956). https://doi.org/10.6028/jres.057.027

H. Rau. Vapour composition and critical constants of selenium. J. Chem. Thermodyn. 6, 525 (1974). https://doi.org/10.1016/0021-9614(74)90039-1

H. Fujisaki, J.B. Westmore, A.W. Tickner. Mass spectrometric study of subliming selenium. Can. J. Chem. 44, 3063 (1966). https://doi.org/10.1139/v66-448

K. Kooser, D.T. Ha, E. It¨al¨a, J. Laksman, S. Urpelainen, E. Kukk. Size selective spectroscopy of Se microclusters. J. Chem. Phys. 137, 044304 (2012). https://doi.org/10.1063/1.4737633

J. Berkowitz, W.A. Chupka. Photoionization of high-temperature vapors. VI. S2, Se2, and Te2. J. Chem. Phys. 50, 4245 (1969). https://doi.org/10.1063/1.1670889

R. Yamdagni, R.F. Porter. Mass spectrometric and torsion effusion studies of the evaporation of liquid selenium. J. Electrochem. Soc. 115, 601 (1968). https://doi.org/10.1149/1.2411356

A.K. Hearley, B.F.G. Johnson, J.S. McIndoe, D.G. Tuck. Mass spectrometric identification of singly-charged an-ionic and cationic sulfur, selenium, tellurium and phosphorus species produced by laser ablation. Inorg. Chim. Acta 334, 105 (2002). https://doi.org/10.1016/S0020-1693(02)00738-7

G.M. Minchev, M. Eddrief, L.M. Trendafilov, H.M. Naradikian, K.L. Trendafilov. Investigation of Se molecular beams used for MBE. Vacuum 47, 157 (1996). https://doi.org/10.1016/0042-207X(95)00187-5

M. Albeck, S. Shaik. Identification of tellurium-containing compounds by means of mass spectrometry. J. Organomet. Chem. 91, 307 (1975). https://doi.org/10.1016/S0022-328X(00)88997-4

Proceedings of the Workshop on Knudsen Effusion Mass Spectrometry (April 23-25, 2012. Juelich, Germany). Edited by N. Jacobson, T.Markus. ECS Trans. 46 (2013).

R. Viswanathan, M. Sai Baba, D. Darwin, A. Raj, R. Balasubramanian, C.K. Mathews. A high temperature mass spectrometric study of tellurium and selenium clusters. In Advance in Mass Spectrometry. Edited by J.F.J. Todd (Wiley, 1985), p. 1087.

J.T. Snodgrass, J.V. Coe, K.M. McHugh, C.B. Freidhoff, K.H. Bowen. Photoelectron spectroscopy of selenium and tellurium containing negative ions: SeO−2 , Se−2 , and Te−2. J. Phys. Chem. 93. 1249 (1989). https://doi.org/10.1021/j100341a016

K.F. Willey, P.Y. Cheng, T.G. Taylor, M.B. Bishop, M.A. Duncan. Photoionization and mass selected photodlssociation of tellurium clusters. J. Phys. Chem. 94, 1545 (1990). https://doi.org/10.1002/chin.199021004

D. Hohl, R.O. Jones. Structure of sulfur clusters using simulated annealing: S2 to S13. J. Chem. Phys. 89, 6823 (1988). https://doi.org/10.1063/1.455356

J. Berkowitz, C. Lifshitz. Photoionization of high temperature vapors. II. Sulfur molecular species. J. Chem. Phys. 48, 4346 (1968). https://doi.org/10.1063/1.1667997

Sh.Sh. Demesh, A.N. Zavilopulo, O.B. Shpenik, E.Yu. Remeta. Fragment appearance energies in dissociative ionization of a sulfur hexafluoride molecule by electron impact. Techn. Phys. 60, 830 (2015). https://doi.org/10.1134/S1063784215060067

S.R. Freund, C.R.Wetzel, J.Sh. Randy, R.T. Hayes. Cross section measurements for electron impact ionization of atoms. Phys. Rev. A 41, 3575 (1990). https://doi.org/10.1103/PhysRevA.41.3575

J. McFarlane, J.C. LeBlanc. Whiteshell Laboratories Pinawa. Manitoba ROE 1L0 AECL-11333. COG-95-276-I, 51 (1996).

J. L. Franklin, J.G. Dillard, H.M. Rosenstock, J.T. Herron, K. Draxl, F.H. Field. Ionization potentials, appearance potentials, and heats of formation of gaseous positive ions. Nat. Stand. Ref. Data Ser. 26. 289 (1969). https://doi.org/10.6028/NBS.NSRDS.26

C.E. Moore. Ionization potentials and ionization limits derived from the analysis of optical spectra. Nat. Stand. Ref. Data Ser. 34, 22 (1970). https://doi.org/10.6028/NBS.NSRDS.34

G.J. Schulz. Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 45, 423 (1973). https://doi.org/10.1103/RevModPhys.45.423

H. Feshbach. A unified theory of nuclear reactions. Ann. Phys. 19, 287 (1962). https://doi.org/10.1016/0003-4916(62)90221-X

H.S. Taylor. Qualitative aspects of resonances in electron-atom and electron-molecule scattering, excitation, and reactions. J. Chem. Phys. 45, 2872 (1966). https://doi.org/10.1063/1.1728041

Y. Le Coat, L. Bouby, J.P. Guillotin, J.P. Ziesel. Negative ion formation by electron attachment in S2 and in the sulphur vapour. J. Phys. B 29, 545 (1996). https://doi.org/10.1088/0953-4075/29/3/019

J. Berkowitz. Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic Press, 1979).

M. Schmidt, W. Siebert, K.W. Bagnall. Photoelectron spectroscopy of small tellurium clusters. J. Non-Cryst. Solids 312-314, 337 (2002). https://doi.org/10.1016/S0022-3093(02)01712-X

V. Kaufman, W.C. Martin. Wavelengths and energy level classifications for the spectra of sulfur (S I through S XVI). J. Phys. Chem. Ref. Data 22, 279 (1993). https://doi.org/10.1063/1.555941

D.A. Peterson, L.A. Schlie. Stable pure sulfur discharges and associated spectra. J. Chem. Phys. 73, 1551 (1980). https://doi.org/10.1063/1.440335

J.E. Ruedy, R.C. Gibbs. The arc spectrum of selenium. Phys. Rev. 46, 880 (1934). https://doi.org/10.1103/PhysRev.46.880

A.N. Zavilopulo, P.P. Markush, O.B. Shpenik. Electron impact ionization and dissociative ionization of sulfur in the gas phase. Techn. Phys. 59, 951 (2014). https://doi.org/10.1134/S1063784214070299

D.C. Martin. Analysis of the spectrum of Se II. Phys. Rev. 48, 938 (1935). https://doi.org/10.1103/PhysRev.48.938

M. Urban, H.F.G. Diercksen, M. Jurek. Metastability in the sulphur molecule S2+2 and S3+2 cations. A theoretical study. Mol. Phys. 94, 199 (1988). https://doi.org/10.1080/002689798168484

A. Benamar, D. Rayane, P. Melinon, B. Tribollet, M. Broyer. Comparison between selenium and tellurium clusters. Z. Phys. D 19, 237 (1991). https://doi.org/10.1007/978-3-642-76178-2_58

T.D. M¨ark. Fundamental aspects of electron impact ionization. Int. J. Mass Spectr. Ion Phys. 45, 125 (1982). https://doi.org/10.1016/0020-7381(82)80103-4

A.N. Zavilopulo, O.B. Shpenik, A.V. Snegursky, F.F. Chipev, V.S. Vukstich. Threshold electron impact ionization of SF6 molecule. Tech. Phys. Lett. 31, 785 (2005). https://doi.org/10.1134/1.2061747

J.H. Gross, P.J. Todd. Mass Spectrometry. A Textbook (Springer, 2004). https://doi.org/10.1007/3-540-36756-X

L.G. Christophorou, J.K. Olthoff. Fundamental Electron Interactions with Plasma Processing Ga, Se, S (Springer, 2004). https://doi.org/10.1007/978-1-4419-8971-0

K. Levsen. Fundamental Aspects in Organic Mass Spectrometry (Chemie, 1978).

Sh.Sh. Demesh, E.Yu. Remeta. Ion appearance energies at electron-impact dissociative ionization of sulfur hexafluoride molecule and its fragments. Eur. Phys. J. D 69, 168 (2015). https://doi.org/10.1140/epjd/e2015-50636-4

Sh.Sh. Demesh, A.N. Zavilopulo, O.B. Shpenik, E.Yu. Remeta. The energy of the appearance of sulfur hexafluoride fragments by electron impact. Zh. Tekhn. Fiz. 85, No. 6, 44 (2015) (in Russian).

Electron Impact Ionization. Edited by T.D. M¨ark, G.H. Dunn (Springer, 1985).

Sh.Sh. Demesh, E.Yu. Remeta. Appearance energies of the SF6 molecule ionic fragments studied ab initio. In Proceedings of the 6th Conference on Elementary Processes in Atomic Systems. (Comenius University, 2014), p. 67.

K.J. Laidler, J.H. Meiser. Physical Chemistry (Benjamin/Cummings, 1982).

S.T.S. Kov'acs, P. Herczku, Z. Juh'asz, B. Sulik. Fragmentation of H2O molecules induced by singly charged projectiles. J. Phys.: Conf. Ser. 635, 032115 (2015). https://doi.org/10.1088/1742-6596/635/3/032115

S.T.S. Kov'acs, P. Herczku, Z. Juh'asz, L. Sarkadi, L. Guly'as, B. Sulik. Ionization of small molecules induced by H+, He+, and N+ projectiles: Comparison of experiment with quantum and classical calculations. Phys. Rev. A 94, 012704 (2016). https://doi.org/10.1103/PhysRevA.94.012704

S.T.S. Kov'acs, P. Herczku, Z. Juh'asz, L. Sarkadi, L. Guly'as, B. Sulik. Dissociative ionization of the H2O molecule induced by medium-energy singly charged projectiles. Phys. Rev. A 96, 032704 (2017). https://doi.org/10.1103/PhysRevA.96.032704

M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

A.D. Becke. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107, 8554 (1997). https://doi.org/10.1063/1.475007

T. Helgaker, W. Klopper, A. Halkier, K.L. Bak, P. Jørgensen, J. Olsen. Highly accurate ab initio computation of thermochemical data. In: Quantum-Mechanical Prediction of Thermochemical Data (Kluwer, 2001), Ch. 1. https://doi.org/10.1007/0-306-47632-0_1

R.O. Jones, P. Ballone. Density functional and Monte-Carlo studies of sulfur. I. Structure and bonding in Sn rings and chains (n =2-18). J. Chem. Phys. 118, 9257 (2003). https://doi.org/10.1063/1.1568081

S. Kohara, A. Goldbach, N. Koura, M.-L. Saboungi, L.A. Curtiss. Vibrational frequencies of small selenium molecules. Chem. Phys. Lett. 287, 282 (1998). https://doi.org/10.1016/S0009-2614(98)00184-5

T. Arion, R. Flesch, T. Schlatholter, F. Alvarado, R. Hoekstra, R. Morgenstern, E. R¨uhl. Collision induced fragmentation of free sulfur clusters. Int. J. Mass Spectrom. 277, 197 (2008). https://doi.org/10.1016/j.ijms.2008.06.007

P. Ghosh, J. Bhattacharjee, U.V. Waghmare. The origin of stability of helical structure of tellurium. J. Phys. Chem. C 112, 983 (2008). https://doi.org/10.1021/jp077070d

Sh.Sh. Demesh, E.Yu. Remeta. Appearance energies of S+k ions from Sn molecules studied ab initio. In: Proceedings of the 3rd XUV/X-Ray Light and Fast Ions for Ultrafast Chemistry General Meeting. Edited by K. T˝ok'esi (ATOMKI/ DE/ ELFT, Debrecen, 2015), p. 33.

Sh.Sh. Demesh. Appearance energies of sulfur fluoride ions and molecular orbital ionization energies. Nauk. Visn. Uzhgorod. Nat. Univ. Ser. Fiz. 38, 110 (2015) (in Ukrainian). https://doi.org/10.24144/2415-8038.2015.38.110-120

Sh. Demesh, E. Remeta. Theoretical study of sulphur cluster fragmentation. In: Proceedings of the 12th European Conference on Atoms, Molecules and Photons (Goethe-Universit¨at, 2016), p. 137.

Sh. Demes, V. Kelemen, E. Remeta. Theoretical study of elastic electron scattering by sulphur clusters. In Proceedings of the 50th Anniversary EGAS conference. (Jagiel-lonian University, 2018), p. 83.

Sh.Sh. Demesh, V.I. Kelemen, E.Yu, Remeta. Potential

electron scattering by the phosphorous systems Pn (n = 1-3). J. Phys.: Conf. Ser. 635, 072020 (2015). https://doi.org/10.1088/1742-6596/635/7/072020

Sh.Sh. Demesh, V.I. Kelemen, E.Yu, Remeta. Potential electron scattering by molecule. Zh. Fiz. Dosl. 19, 4301 (2016) (in Ukrainian). https://doi.org/10.30970/jps.19.4301

Sh.Sh. Demesh, V.I. Kelemen, E.Yu. Remeta. Potential electron scattering by P2 and P3 phosphorus molecules. Ukr. J. Phys. 61, 291 (2016). https://doi.org/10.15407/ujpe61.04.0291

S. Demesh, V. Kelemen, E. Remeta. Elastic electron scattering by the CF3 radical in the 1-1000 eV energy range. J. Phys. B 50, 135201 (2017). https://doi.org/10.1088/1361-6455/aa739f

A.N. Zavilopulo, O.B. Shpenik, P.P. Markush, M.I. Mykyta. Electron-impact ionization of sulfur in the gas phase. Tech. Phys. Lett. 40, 13 (2014). https://doi.org/10.1134/S1063785014010131

E. R¨uhl. Core level excitation, ionization, relaxation, and fragmentation of free clusters. Int. J. Mass Spectrom. Ion Phys. 229, 117 (2003). https://doi.org/10.1016/j.ijms.2003.08.006

P.F. Kelly. Oxygen, sulfur, selenium and tellurium. Annu. Rep. Prog. Chem., Sect. A 97, 95. (2001). https://doi.org/10.1039/b102975b

S.J. Brotton, J.W. McConkey. Dissociative excitation and fragmentation of S8 by electron impact. J. Chem. Phys. 134, 204301 (2011). https://doi.org/10.1063/1.3582909

S. Millefiori, A. Alparone. Ab initio study of the structure and polarizability of sulfur clusters, Sn (n = 2-12). J. Phys. Chem. A 105, 9489 (2001). https://doi.org/10.1021/jp0121466

I.N. Levine. Quantum Chemistry (Prentice-Hall, 2000).

A. Szabo, N.S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, 1996).

Computational Chemistry Comparison and Benchmark Data Base Release. NIST Standard Reference Database, No. 101 (2018).

F.A. Cotton, G. Wilkinson. Advanced Inorganic Chemistry: A Comprehensive Text (Interscience, 1972).

K.P. Huber. G. Herzberg. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, 1979). https://doi.org/10.1007/978-1-4757-0961-2

J.A. Kerr. Bond dissociation energies by kinetic methods. Chem. Rev. 66, 465 (1966). https://doi.org/10.1021/cr60243a001

A.A. Radtsig, B.M. Smirnov. Handbook on Atomic and Molecular Physics (Atomizdat, 1980) (in Russian).

A.A. Radzig, B.M. Smirnov. Reference Data on Atoms, Molecules, and Ions (Springer, 1985). https://doi.org/10.1007/978-3-642-82048-9

A.A. Radzig, B.M. Smirnov. Parameters of Atoms and Atomic Ions. A Handbook (Energoatomizdat, 1986) (in Russian).

A.N. Zavilopulo, O.B. Shpenik, P.P. Markush, M.I. Mykyta. Electron-impact ionization and dissociative ionization of sulfur in the gas phase. Tech. Phys. 59, 951 (2014). https://doi.org/10.1134/S1063784214070299

S. Hunsicker, R.O. Jones, G. Gantef¨or. Rings and chains in sulfur cluster anions S− to S9: Theory (simulated annealing) and experiment (photoelectron detachment). J. Chem. Phys. 102, 5917 (1995). https://doi.org/10.1063/1.469326

J.E. Bartmess. Negative ion energetics data. In: NIST Reference Database, No. 69 (2018).

S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard. Ion energetics data. In: NIST Standard Reference Database, No. 69 (2018).

H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron. Ion energetics data. In: NIST Standard Reference Database, No. 69 (2018).

B. Tribollet, A. Benamar, D. Rayane, P. Melinon, M. Broyer. Experimental studies on selenium cluster structures. Z. Phys. D 26, 352 (1993).v https://doi.org/10.1007/BF01429192

J. Becker, K. Rademann, F. Hensel. Electronic structure of selenium- and tellurium-clusters. Z. Phys. D 19, 233 (1991). https://doi.org/10.1007/978-3-642-76178-2_57

X. Yang, Y. Hu, S. Yang, M.M.T. Loy. Photofragmentation studies of small selenium cluster cations Se+n (n = 3-8). J. Chem. Phys. 111, 7837 (1999). https://doi.org/10.1063/1.480119

C. Br'echignac, Ph. Cahuzac, N. K'eba¨ıli, J. Leygnier. Photothermodissociation of selenium clusters. J. Chem. Phys. 112, 10197 (2000). https://doi.org/10.1063/1.481661

P.P. Markush. Selenium vapor ionization by slow electrons. Nauk. Visn. Uzhgorod. Nat. Univ. Ser. Fiz. 34, 149 (2013) (in Ukrainian).

O.B. Shpenik, M.M. Erdevdy, P.P.Markush, J.E.Kontros, I.V. Chernyshova. Electron impact excitation and ionization of sulfur, selenium, and tellurium vapors. Ukr. J. Phys. 60, 217 (2015). https://doi.org/10.15407/ujpe60.03.0217

W. Xu, W. Bai. The selenium clusters Sen (n = 1-5) and their anions: Structures and electron affinities. J. Mol. Struct. THEOCHEM. 854, 89 (2008). https://doi.org/10.1016/j.theochem.2007.12.040

A. Alparone. Structural, energetic and response electric properties of cyclic selenium clusters: an ab initio and density functional theory study. Theor. Chem. Acc. 131, 1239 (2012). https://doi.org/10.1007/s00214-012-1239-2

G. Igel-Mann, H. Stoll, H. Preuss. Structure and ionization potentials of clusters containing heavy elements. II. Homonuclear group VI clusters up to hexamers. Mol. Phys. 80, 341 (1993). https://doi.org/10.1080/00268979300102301

B.C. Pan, J.G. Han, J. Yang, S. Yang. Theoretical studies of neutral and cationic selenium clusters. Phys. Rev. B 62, 17026 (2000). https://doi.org/10.1103/PhysRevB.62.17026

Wen Yang, Ren-Bao Liu. Quantum many-body theory of qubit decoherence in a finite-size spin bath. Phys. Rev. B 78, 085315 (2002). https://doi.org/10.1103/PhysRevB.78.129901

K. Nagaya, A. Oohata, I. Yamamoto, M. Yao. Photoelectron spectroscopy of small tellurium clusters. J. Non-Cryst. Solids 312-314, 337 (2002). https://doi.org/10.1016/S0022-3093(02)01712-X

C. Br'echignac, Ph. Cahuzac, M. de Frutos, P. Garnier, N. Kebaili. Dissociation energies of tellurium cluster ions from thermoevaporation experiments. J. Chem. Phys. 103, 6631 (1995). https://doi.org/10.1063/1.470392

J. Akola, R.O. Jones. Structure and dynamics in amorphous tellurium and Ten clusters: A density functional study. Phys. Rev. B 85, 134103 (2012). https://doi.org/10.1103/PhysRevB.85.134103

B.C. Pan. Geometric structures, electronic properties, and vibrational frequencies of small tellurium clusters. Phys. Rev. B 65, 085407 (2002). https://doi.org/10.1103/PhysRevB.65.085407

O.M. Uy, J. Drowart. Mass spectrometric determination of the dissociation energies of the molecules BiO, BiS, BiSe and BiTe. Trans. Faraday Soc. 65, 3221 (1969). https://doi.org/10.1039/tf9696503221

O.M. Uy, D.W.Muenow, P.J. Ficalora, J.L. Margrave. Mass spectrometric studies at high temperatures. Part 30. Vaporization of Ga2S3, Ga2Se3 and Ga2Te3, and stabilities of the gaseous gallium chalcogenides. Trans. Faraday Soc. 64, 2998 (1968). https://doi.org/10.1039/TF9686402998

Published

2020-07-15

How to Cite

Shpenik, O., Zavilopulo, A., Remeta, E., Demes, S., & Erdevdy, M. (2020). Inelastic Processes of Electron Interaction with Chalcogens in the Gaseous Phase (a Review). Ukrainian Journal of Physics, 65(7), 557. https://doi.org/10.15407/ujpe65.7.557

Issue

Section

Optics, atoms and molecules