Непружні процеси взаємодії електронів з халькогенами в газовій фазі

Автор(и)

  • O. Shpenik Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • A. Zavilopulo Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • E. Remeta Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • S. Demes Institute for Nuclear Research (MTA Atomki), Hungarian Academy of Sciences
  • M. Erdevdy Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.7.557

Ключові слова:

халькогени, метод мас-спектрометрiї, йоннi фраґменти, дисоцiативна йонiзацiя, метод оптичної спектроскопiї

Анотація

Проведено комплекснi дослiдження елементарних процесiв парних зiткнень у випадку проходження електронiв низьких (0–70 еВ) енергiй через пару халькогенiв (S, Se, Te). У дiапазонi температур випаровування (T = 320–700 К для сiрки, T = 420–490 К – селену i T = 400–600 К – телуру) в рамках мас-спектроскопiчного методу дослiджено склад пари цих елементiв, за допомоги методу оптичної спектроскопiї вивчено спектри випромiнювання в дiапазонi довжин хвиль вiд 200 до 600 нм i, використовуючи електроннi струменi високої енергетичної однорiдностi, вимiряно повнi (iнтеґральнi) перерiзи утворення позитивних i негативних йонiв S, Se i Te. Знайдено, що в умовах проведених дослiджень у парi халькогенiв основними компонентами є молекули з кiлькiстю атомiв n вiд 2 до 8. У спектрах випромiнювання за енергiй бомбардувальних електронiв нижче 10 еВ спостерiгаються в основному смуги двоатомних молекул, а за вищих енергiй (E > 15 еВ) з’являються окремi атомнi та йоннi лiнiї, до того ж за E = 50 еВ найiнтенсивнiшими серед них є лiнiї однозарядних йонiв. Показано, що найефективнiшим каналом реакцiї є взаємодiя електронiв з двоатомними молекулами цих елементiв, а iншi процеси в основному пов’язанi з розпадом багатоатомних молекул. З аналiзу енергетичних залежностей характеристик процесiв знайдено пороги збудження i йонiзацiї продуктiв взаємодiї. Виявлено особливостi на енергетичних залежностях функцiй збудження i йонiзацiї. Вперше в цих дослiдженнях виявлено двозаряднi йони двоатомних молекул сiрки та атомiв селену i телуру, а також зареєстровано появу тризарядних йонiв двоатомних молекул сiрки. Доведено, що основний внесок в повний (iнтеґральний) ефективний перерiз йонiзацiї як позитивних, так i негативних йонiв вносять процеси взаємодiї електронiв з двоатомними молекулами S2, Se2 i Te2. Окрiм експериментальних дослiджень проведено детальнi теоретичнi дослiдження. Виконано розрахунки та зроблено теоретичний аналiз характеристик структури гомоатомних молекул сiрки Sn, селену Sen, телуру Ten (n = 2–8) – мiжатомних вiдстаней, потенцiалiв йонiзацiї, енергiй спорiдненостi до електрона, енергiй дисоцiацiї. Енергетичнi характеристики використано для розрахунку енергiй появи однозарядних та двозарядних йонних фраґментiв вказаних молекул в процесi дисоцiативної йонiзацiї. Проведено ретельне порiвняння отриманих даних з наявними експериментальними та теоретичними даними.

Посилання

J.H. Gross. Mass Spectrometry: A Textbook (Springer, 2011). https://doi.org/10.1007/978-3-642-10711-5

A.N. Zavilopulo, A.S. Agafonova, A.V. Snegurskii. Electron impact-induced ionization and dissociation of the freon-12 molecule. Techn. Phys. 55, 1735 (2010). https://doi.org/10.1134/S1063784210120042

A.N. Zavilopulo, O.B. Shpenik, O.V. Pilipchinets. Mass spectrometry of a xylitol molecule. Techn. Phys. 64, 8 (2019). https://doi.org/10.1134/S1063784219010274

A.N. Zavilopulo, F.F. Chipev, O.B. Shpenik. Ionization of nitrogen, oxygen, water, and carbon dioxide molecules by near-threshold electron impact. Techn. Phys. 50, 402 (2005). https://doi.org/10.1134/1.1901776

L.M. Feaga, M.A. McGrath, P.D. Feldman. The abundance of atomic sulfur in the atmosphere of Io, Astrophys. J. 570, 439 (2002). https://doi.org/10.1086/339500

J. Berkovitz, J.R. Marquart. Equilibrium composition of sulfur vapor. J. Chem. Phys. 39, 275 (1963). https://doi.org/10.1063/1.1734241

M. Harnisch, N. Weinberger, S. Denifl, P. Scheier, O. Echt. Helium droplets doped with sulfur and C60. J. Phys. Chem. C 119, 10919 (2015). https://doi.org/10.1021/jp510870x

E. R¨uhl. Core level excitation, ionization, relaxation, and fragmentation of free clusters. Int. J. Mass Spectrom. Ion Phys. 229, 117 (2003). https://doi.org/10.1016/j.ijms.2003.08.006

W. Rosinger, M. Grade, W. Hirschwald. Electron impact induced excitation processes involving the sulfur clusters S2 to S8. Ber. Bunsen. Phys. Chem. 87, 536 (1983). https://doi.org/10.1002/bbpc.19830870616

H.P. Saha, D. Lin. Ab initio calculation for low-energy elastic scattering of electrons from sulfur atoms. Phys. Rev. A 56, 1897 (1997). https://doi.org/10.1103/PhysRevA.56.1897

O. Zatsarinny, S.S. Tayal. Low-energy electron collisions with atomic sulfur: R-matrix calculation with non-orthogonal orbitals. J. Phys. B 34, 3383 (2001). https://doi.org/10.1088/0953-4075/34/17/303

H. Murai, Y. Ishijima, T. Mitsumura, Y. Sakamoto, H. Kato, M. Hoshino, F. Blanco, G. Garc'ıa, P. Lim˜ao-Vieira, M.J. Brunger, S.J. Buckman, H. Tanaka. A comprehensive and comparative study of elastic electron scattering from OCS and CS2 in the energy region from 1.2 to 200 eV. J. Chem. Phys. 138, 054302 (2013). https://doi.org/10.1063/1.4788666

C. Winstead, P.G. Hipes, M.A.P. Lima, V. McKoy. Studies of electron collisions with polyatomic molecules using distributed-memory parallel computers. J. Chem. Phys. 94, 5455 (1991). https://doi.org/10.1063/1.460480

S. Kaur, A. Bharadvaja, K.L. Baluja. Electron-impact study of S3 using the R-matrix method. Phys. Rev. A 83, 062707 (2011). https://doi.org/10.1103/PhysRevA.83.062707

N. Greenwood, A. Earnshaw. Chemistry of the Elements (Butterworth-Heinemann, 1997).

Z.J. Becker. Elemental Selenium. In Chemical Thermodynamics of Selenium. Edited by F.J. Mompean, J. Perrone, M. Illemass'ene (Elsevier, 2010), ch. V.1.

L.G. Johansson, E. Gafvelin, J. Am'er. Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta 1726, 1 (2005). https://doi.org/10.1016/j.bbagen.2005.05.010

NIST Standard Reference Database. http://www.webbook.nist.gov.

G. Audi, A.H. Wapstra, C. Thibault. The AME2003 (NUBASE) atomic mass evaluation (II). Tables, graphs, and references. Nucl. Phys. A 729, 3 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.002

R. Viswanathan, R. Balasubramanian, D. Raj, D. Albert, B.M. Sai, N.T.S. Lakshmi. Vaporization studies on elemental tellurium and selenium by Knudsen effusion mass spectrometry. J. Alloy. Compd. 603, 75 (2014). https://doi.org/10.1016/j.jallcom.2014.03.040

E. Illenberger, J. Momigny. Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization (Springer, 1992). https://doi.org/10.1007/978-3-662-07383-4

Advanced Topics in Theoretical Chemical Physics. Edited by J. Maruani, R. Lefebvre, E.J. Br¨andas (Kluwer, 2003).

J.H. Gross. Principles of ionization and ion dissociation. In J.H. Gross. Mass Spectrometry (Springer, 2011), p. 21. https://doi.org/10.1007/978-3-642-10711-5_2

Z.J. Becker, K. Rademann, F. Hensel. Ultraviolet photoelectron studies of the molecules Se5, Se6, Se7 and Se8 with relevance to their geometrical structure. Z. Phys. D 19, 229 (1991). https://doi.org/10.1007/978-3-642-76178-2_56

A.N. Zavilopulo, O.B. Shpenik, A.M. Mylymko. Examination of a molecular Se beam by mass spectrometry with electron ionization. Techn. Phys. 62, 359 (2017). https://doi.org/10.1134/S106378421703029X

G. Gantef¨or, S. Hunsicker, R.O. Jones. Prediction and observation of ring and chain isomers in Sn− ions. Chem. Phys. Lett. 236, 43 (1995). https://doi.org/10.1016/0009-2614(95)00206-J

O.B. Shpenik, A.N. Zavilopulo, O.V. Pylypchynets. Electron impact ionization of tellurium in the gas phase. Dopov. Nat. Akad. Nauk Ukr. No. 5, 44 (2018) (in Ukrainian). https://doi.org/10.15407/dopovidi2018.05.044

A.N. Zavilopulo, M.I. Mykyta, A.N. Mylymko, O.B. Shpenik. Ionization and dissociative ionization of methane molecules. Techn. Phys. 58, 1251 (2013). https://doi.org/10.1134/S1063784213090272

A.N. Zavilopulo, O.B. Shpenik, A.S. Agafonova. Electron impact ionization of gas-phase guanine near the threshold. J. Phys. B 42, 1 (2009). https://doi.org/10.1088/0953-4075/42/2/025101

J.E. Kontros, L. Sz'ot'er, I.V. Chernyshova O.B. Shpenik. Cross-sections of slow electron scattering by cadmium atoms. J. Phys. B 35, 2195 (2002). https://doi.org/10.1088/0953-4075/35/10/301

N.M. Erdevdy, O.B. Shpenik, P.P. Markush. Electron-impact excitation of gas-phase sulfur. J. Appl. Spectrosc. 82, 19 (2015). https://doi.org/10.1007/s10812-015-0058-3

A.N. Zavilopulo, E.A. Mironets, A.S. Agafonova. An upgraded ion source for a mass spectrometer. Instrum. Experim. Techn. 55, 65 (2012). https://doi.org/10.1134/S0020441211060315

G. Dudek, E.P. Dudek. The mass spectrum of sulfur. J. Chem. Educ. 66, 304 (1989). https://doi.org/10.1021/ed066p304

P. Bradt, F.L. Mohler, V.H. Dibeler. Mass spectrum of sulfur vapor. J. Res. Nat. Bur. Stand. 57, No. 4, 223 (1956). https://doi.org/10.6028/jres.057.027

H. Rau. Vapour composition and critical constants of selenium. J. Chem. Thermodyn. 6, 525 (1974). https://doi.org/10.1016/0021-9614(74)90039-1

H. Fujisaki, J.B. Westmore, A.W. Tickner. Mass spectrometric study of subliming selenium. Can. J. Chem. 44, 3063 (1966). https://doi.org/10.1139/v66-448

K. Kooser, D.T. Ha, E. It¨al¨a, J. Laksman, S. Urpelainen, E. Kukk. Size selective spectroscopy of Se microclusters. J. Chem. Phys. 137, 044304 (2012). https://doi.org/10.1063/1.4737633

J. Berkowitz, W.A. Chupka. Photoionization of high-temperature vapors. VI. S2, Se2, and Te2. J. Chem. Phys. 50, 4245 (1969). https://doi.org/10.1063/1.1670889

R. Yamdagni, R.F. Porter. Mass spectrometric and torsion effusion studies of the evaporation of liquid selenium. J. Electrochem. Soc. 115, 601 (1968). https://doi.org/10.1149/1.2411356

A.K. Hearley, B.F.G. Johnson, J.S. McIndoe, D.G. Tuck. Mass spectrometric identification of singly-charged an-ionic and cationic sulfur, selenium, tellurium and phosphorus species produced by laser ablation. Inorg. Chim. Acta 334, 105 (2002). https://doi.org/10.1016/S0020-1693(02)00738-7

G.M. Minchev, M. Eddrief, L.M. Trendafilov, H.M. Naradikian, K.L. Trendafilov. Investigation of Se molecular beams used for MBE. Vacuum 47, 157 (1996). https://doi.org/10.1016/0042-207X(95)00187-5

M. Albeck, S. Shaik. Identification of tellurium-containing compounds by means of mass spectrometry. J. Organomet. Chem. 91, 307 (1975). https://doi.org/10.1016/S0022-328X(00)88997-4

Proceedings of the Workshop on Knudsen Effusion Mass Spectrometry (April 23-25, 2012. Juelich, Germany). Edited by N. Jacobson, T.Markus. ECS Trans. 46 (2013).

R. Viswanathan, M. Sai Baba, D. Darwin, A. Raj, R. Balasubramanian, C.K. Mathews. A high temperature mass spectrometric study of tellurium and selenium clusters. In Advance in Mass Spectrometry. Edited by J.F.J. Todd (Wiley, 1985), p. 1087.

J.T. Snodgrass, J.V. Coe, K.M. McHugh, C.B. Freidhoff, K.H. Bowen. Photoelectron spectroscopy of selenium and tellurium containing negative ions: SeO−2 , Se−2 , and Te−2. J. Phys. Chem. 93. 1249 (1989). https://doi.org/10.1021/j100341a016

K.F. Willey, P.Y. Cheng, T.G. Taylor, M.B. Bishop, M.A. Duncan. Photoionization and mass selected photodlssociation of tellurium clusters. J. Phys. Chem. 94, 1545 (1990). https://doi.org/10.1002/chin.199021004

D. Hohl, R.O. Jones. Structure of sulfur clusters using simulated annealing: S2 to S13. J. Chem. Phys. 89, 6823 (1988). https://doi.org/10.1063/1.455356

J. Berkowitz, C. Lifshitz. Photoionization of high temperature vapors. II. Sulfur molecular species. J. Chem. Phys. 48, 4346 (1968). https://doi.org/10.1063/1.1667997

Sh.Sh. Demesh, A.N. Zavilopulo, O.B. Shpenik, E.Yu. Remeta. Fragment appearance energies in dissociative ionization of a sulfur hexafluoride molecule by electron impact. Techn. Phys. 60, 830 (2015). https://doi.org/10.1134/S1063784215060067

S.R. Freund, C.R.Wetzel, J.Sh. Randy, R.T. Hayes. Cross section measurements for electron impact ionization of atoms. Phys. Rev. A 41, 3575 (1990). https://doi.org/10.1103/PhysRevA.41.3575

J. McFarlane, J.C. LeBlanc. Whiteshell Laboratories Pinawa. Manitoba ROE 1L0 AECL-11333. COG-95-276-I, 51 (1996).

J. L. Franklin, J.G. Dillard, H.M. Rosenstock, J.T. Herron, K. Draxl, F.H. Field. Ionization potentials, appearance potentials, and heats of formation of gaseous positive ions. Nat. Stand. Ref. Data Ser. 26. 289 (1969). https://doi.org/10.6028/NBS.NSRDS.26

C.E. Moore. Ionization potentials and ionization limits derived from the analysis of optical spectra. Nat. Stand. Ref. Data Ser. 34, 22 (1970). https://doi.org/10.6028/NBS.NSRDS.34

G.J. Schulz. Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 45, 423 (1973). https://doi.org/10.1103/RevModPhys.45.423

H. Feshbach. A unified theory of nuclear reactions. Ann. Phys. 19, 287 (1962). https://doi.org/10.1016/0003-4916(62)90221-X

H.S. Taylor. Qualitative aspects of resonances in electron-atom and electron-molecule scattering, excitation, and reactions. J. Chem. Phys. 45, 2872 (1966). https://doi.org/10.1063/1.1728041

Y. Le Coat, L. Bouby, J.P. Guillotin, J.P. Ziesel. Negative ion formation by electron attachment in S2 and in the sulphur vapour. J. Phys. B 29, 545 (1996). https://doi.org/10.1088/0953-4075/29/3/019

J. Berkowitz. Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic Press, 1979).

M. Schmidt, W. Siebert, K.W. Bagnall. Photoelectron spectroscopy of small tellurium clusters. J. Non-Cryst. Solids 312-314, 337 (2002). https://doi.org/10.1016/S0022-3093(02)01712-X

V. Kaufman, W.C. Martin. Wavelengths and energy level classifications for the spectra of sulfur (S I through S XVI). J. Phys. Chem. Ref. Data 22, 279 (1993). https://doi.org/10.1063/1.555941

D.A. Peterson, L.A. Schlie. Stable pure sulfur discharges and associated spectra. J. Chem. Phys. 73, 1551 (1980). https://doi.org/10.1063/1.440335

J.E. Ruedy, R.C. Gibbs. The arc spectrum of selenium. Phys. Rev. 46, 880 (1934). https://doi.org/10.1103/PhysRev.46.880

A.N. Zavilopulo, P.P. Markush, O.B. Shpenik. Electron impact ionization and dissociative ionization of sulfur in the gas phase. Techn. Phys. 59, 951 (2014). https://doi.org/10.1134/S1063784214070299

D.C. Martin. Analysis of the spectrum of Se II. Phys. Rev. 48, 938 (1935). https://doi.org/10.1103/PhysRev.48.938

M. Urban, H.F.G. Diercksen, M. Jurek. Metastability in the sulphur molecule S2+2 and S3+2 cations. A theoretical study. Mol. Phys. 94, 199 (1988). https://doi.org/10.1080/002689798168484

A. Benamar, D. Rayane, P. Melinon, B. Tribollet, M. Broyer. Comparison between selenium and tellurium clusters. Z. Phys. D 19, 237 (1991). https://doi.org/10.1007/978-3-642-76178-2_58

T.D. M¨ark. Fundamental aspects of electron impact ionization. Int. J. Mass Spectr. Ion Phys. 45, 125 (1982). https://doi.org/10.1016/0020-7381(82)80103-4

A.N. Zavilopulo, O.B. Shpenik, A.V. Snegursky, F.F. Chipev, V.S. Vukstich. Threshold electron impact ionization of SF6 molecule. Tech. Phys. Lett. 31, 785 (2005). https://doi.org/10.1134/1.2061747

J.H. Gross, P.J. Todd. Mass Spectrometry. A Textbook (Springer, 2004). https://doi.org/10.1007/3-540-36756-X

L.G. Christophorou, J.K. Olthoff. Fundamental Electron Interactions with Plasma Processing Ga, Se, S (Springer, 2004). https://doi.org/10.1007/978-1-4419-8971-0

K. Levsen. Fundamental Aspects in Organic Mass Spectrometry (Chemie, 1978).

Sh.Sh. Demesh, E.Yu. Remeta. Ion appearance energies at electron-impact dissociative ionization of sulfur hexafluoride molecule and its fragments. Eur. Phys. J. D 69, 168 (2015). https://doi.org/10.1140/epjd/e2015-50636-4

Sh.Sh. Demesh, A.N. Zavilopulo, O.B. Shpenik, E.Yu. Remeta. The energy of the appearance of sulfur hexafluoride fragments by electron impact. Zh. Tekhn. Fiz. 85, No. 6, 44 (2015) (in Russian).

Electron Impact Ionization. Edited by T.D. M¨ark, G.H. Dunn (Springer, 1985).

Sh.Sh. Demesh, E.Yu. Remeta. Appearance energies of the SF6 molecule ionic fragments studied ab initio. In Proceedings of the 6th Conference on Elementary Processes in Atomic Systems. (Comenius University, 2014), p. 67.

K.J. Laidler, J.H. Meiser. Physical Chemistry (Benjamin/Cummings, 1982).

S.T.S. Kov'acs, P. Herczku, Z. Juh'asz, B. Sulik. Fragmentation of H2O molecules induced by singly charged projectiles. J. Phys.: Conf. Ser. 635, 032115 (2015). https://doi.org/10.1088/1742-6596/635/3/032115

S.T.S. Kov'acs, P. Herczku, Z. Juh'asz, L. Sarkadi, L. Guly'as, B. Sulik. Ionization of small molecules induced by H+, He+, and N+ projectiles: Comparison of experiment with quantum and classical calculations. Phys. Rev. A 94, 012704 (2016). https://doi.org/10.1103/PhysRevA.94.012704

S.T.S. Kov'acs, P. Herczku, Z. Juh'asz, L. Sarkadi, L. Guly'as, B. Sulik. Dissociative ionization of the H2O molecule induced by medium-energy singly charged projectiles. Phys. Rev. A 96, 032704 (2017). https://doi.org/10.1103/PhysRevA.96.032704

M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

A.D. Becke. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107, 8554 (1997). https://doi.org/10.1063/1.475007

T. Helgaker, W. Klopper, A. Halkier, K.L. Bak, P. Jørgensen, J. Olsen. Highly accurate ab initio computation of thermochemical data. In: Quantum-Mechanical Prediction of Thermochemical Data (Kluwer, 2001), Ch. 1. https://doi.org/10.1007/0-306-47632-0_1

R.O. Jones, P. Ballone. Density functional and Monte-Carlo studies of sulfur. I. Structure and bonding in Sn rings and chains (n =2-18). J. Chem. Phys. 118, 9257 (2003). https://doi.org/10.1063/1.1568081

S. Kohara, A. Goldbach, N. Koura, M.-L. Saboungi, L.A. Curtiss. Vibrational frequencies of small selenium molecules. Chem. Phys. Lett. 287, 282 (1998). https://doi.org/10.1016/S0009-2614(98)00184-5

T. Arion, R. Flesch, T. Schlatholter, F. Alvarado, R. Hoekstra, R. Morgenstern, E. R¨uhl. Collision induced fragmentation of free sulfur clusters. Int. J. Mass Spectrom. 277, 197 (2008). https://doi.org/10.1016/j.ijms.2008.06.007

P. Ghosh, J. Bhattacharjee, U.V. Waghmare. The origin of stability of helical structure of tellurium. J. Phys. Chem. C 112, 983 (2008). https://doi.org/10.1021/jp077070d

Sh.Sh. Demesh, E.Yu. Remeta. Appearance energies of S+k ions from Sn molecules studied ab initio. In: Proceedings of the 3rd XUV/X-Ray Light and Fast Ions for Ultrafast Chemistry General Meeting. Edited by K. T˝ok'esi (ATOMKI/ DE/ ELFT, Debrecen, 2015), p. 33.

Sh.Sh. Demesh. Appearance energies of sulfur fluoride ions and molecular orbital ionization energies. Nauk. Visn. Uzhgorod. Nat. Univ. Ser. Fiz. 38, 110 (2015) (in Ukrainian). https://doi.org/10.24144/2415-8038.2015.38.110-120

Sh. Demesh, E. Remeta. Theoretical study of sulphur cluster fragmentation. In: Proceedings of the 12th European Conference on Atoms, Molecules and Photons (Goethe-Universit¨at, 2016), p. 137.

Sh. Demes, V. Kelemen, E. Remeta. Theoretical study of elastic electron scattering by sulphur clusters. In Proceedings of the 50th Anniversary EGAS conference. (Jagiel-lonian University, 2018), p. 83.

Sh.Sh. Demesh, V.I. Kelemen, E.Yu, Remeta. Potential

electron scattering by the phosphorous systems Pn (n = 1-3). J. Phys.: Conf. Ser. 635, 072020 (2015). https://doi.org/10.1088/1742-6596/635/7/072020

Sh.Sh. Demesh, V.I. Kelemen, E.Yu, Remeta. Potential electron scattering by molecule. Zh. Fiz. Dosl. 19, 4301 (2016) (in Ukrainian). https://doi.org/10.30970/jps.19.4301

Sh.Sh. Demesh, V.I. Kelemen, E.Yu. Remeta. Potential electron scattering by P2 and P3 phosphorus molecules. Ukr. J. Phys. 61, 291 (2016). https://doi.org/10.15407/ujpe61.04.0291

S. Demesh, V. Kelemen, E. Remeta. Elastic electron scattering by the CF3 radical in the 1-1000 eV energy range. J. Phys. B 50, 135201 (2017). https://doi.org/10.1088/1361-6455/aa739f

A.N. Zavilopulo, O.B. Shpenik, P.P. Markush, M.I. Mykyta. Electron-impact ionization of sulfur in the gas phase. Tech. Phys. Lett. 40, 13 (2014). https://doi.org/10.1134/S1063785014010131

E. R¨uhl. Core level excitation, ionization, relaxation, and fragmentation of free clusters. Int. J. Mass Spectrom. Ion Phys. 229, 117 (2003). https://doi.org/10.1016/j.ijms.2003.08.006

P.F. Kelly. Oxygen, sulfur, selenium and tellurium. Annu. Rep. Prog. Chem., Sect. A 97, 95. (2001). https://doi.org/10.1039/b102975b

S.J. Brotton, J.W. McConkey. Dissociative excitation and fragmentation of S8 by electron impact. J. Chem. Phys. 134, 204301 (2011). https://doi.org/10.1063/1.3582909

S. Millefiori, A. Alparone. Ab initio study of the structure and polarizability of sulfur clusters, Sn (n = 2-12). J. Phys. Chem. A 105, 9489 (2001). https://doi.org/10.1021/jp0121466

I.N. Levine. Quantum Chemistry (Prentice-Hall, 2000).

A. Szabo, N.S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, 1996).

Computational Chemistry Comparison and Benchmark Data Base Release. NIST Standard Reference Database, No. 101 (2018).

F.A. Cotton, G. Wilkinson. Advanced Inorganic Chemistry: A Comprehensive Text (Interscience, 1972).

K.P. Huber. G. Herzberg. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, 1979). https://doi.org/10.1007/978-1-4757-0961-2

J.A. Kerr. Bond dissociation energies by kinetic methods. Chem. Rev. 66, 465 (1966). https://doi.org/10.1021/cr60243a001

A.A. Radtsig, B.M. Smirnov. Handbook on Atomic and Molecular Physics (Atomizdat, 1980) (in Russian).

A.A. Radzig, B.M. Smirnov. Reference Data on Atoms, Molecules, and Ions (Springer, 1985). https://doi.org/10.1007/978-3-642-82048-9

A.A. Radzig, B.M. Smirnov. Parameters of Atoms and Atomic Ions. A Handbook (Energoatomizdat, 1986) (in Russian).

A.N. Zavilopulo, O.B. Shpenik, P.P. Markush, M.I. Mykyta. Electron-impact ionization and dissociative ionization of sulfur in the gas phase. Tech. Phys. 59, 951 (2014). https://doi.org/10.1134/S1063784214070299

S. Hunsicker, R.O. Jones, G. Gantef¨or. Rings and chains in sulfur cluster anions S− to S9: Theory (simulated annealing) and experiment (photoelectron detachment). J. Chem. Phys. 102, 5917 (1995). https://doi.org/10.1063/1.469326

J.E. Bartmess. Negative ion energetics data. In: NIST Reference Database, No. 69 (2018).

S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard. Ion energetics data. In: NIST Standard Reference Database, No. 69 (2018).

H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron. Ion energetics data. In: NIST Standard Reference Database, No. 69 (2018).

B. Tribollet, A. Benamar, D. Rayane, P. Melinon, M. Broyer. Experimental studies on selenium cluster structures. Z. Phys. D 26, 352 (1993).v https://doi.org/10.1007/BF01429192

J. Becker, K. Rademann, F. Hensel. Electronic structure of selenium- and tellurium-clusters. Z. Phys. D 19, 233 (1991). https://doi.org/10.1007/978-3-642-76178-2_57

X. Yang, Y. Hu, S. Yang, M.M.T. Loy. Photofragmentation studies of small selenium cluster cations Se+n (n = 3-8). J. Chem. Phys. 111, 7837 (1999). https://doi.org/10.1063/1.480119

C. Br'echignac, Ph. Cahuzac, N. K'eba¨ıli, J. Leygnier. Photothermodissociation of selenium clusters. J. Chem. Phys. 112, 10197 (2000). https://doi.org/10.1063/1.481661

P.P. Markush. Selenium vapor ionization by slow electrons. Nauk. Visn. Uzhgorod. Nat. Univ. Ser. Fiz. 34, 149 (2013) (in Ukrainian).

O.B. Shpenik, M.M. Erdevdy, P.P.Markush, J.E.Kontros, I.V. Chernyshova. Electron impact excitation and ionization of sulfur, selenium, and tellurium vapors. Ukr. J. Phys. 60, 217 (2015). https://doi.org/10.15407/ujpe60.03.0217

W. Xu, W. Bai. The selenium clusters Sen (n = 1-5) and their anions: Structures and electron affinities. J. Mol. Struct. THEOCHEM. 854, 89 (2008). https://doi.org/10.1016/j.theochem.2007.12.040

A. Alparone. Structural, energetic and response electric properties of cyclic selenium clusters: an ab initio and density functional theory study. Theor. Chem. Acc. 131, 1239 (2012). https://doi.org/10.1007/s00214-012-1239-2

G. Igel-Mann, H. Stoll, H. Preuss. Structure and ionization potentials of clusters containing heavy elements. II. Homonuclear group VI clusters up to hexamers. Mol. Phys. 80, 341 (1993). https://doi.org/10.1080/00268979300102301

B.C. Pan, J.G. Han, J. Yang, S. Yang. Theoretical studies of neutral and cationic selenium clusters. Phys. Rev. B 62, 17026 (2000). https://doi.org/10.1103/PhysRevB.62.17026

Wen Yang, Ren-Bao Liu. Quantum many-body theory of qubit decoherence in a finite-size spin bath. Phys. Rev. B 78, 085315 (2002). https://doi.org/10.1103/PhysRevB.78.129901

K. Nagaya, A. Oohata, I. Yamamoto, M. Yao. Photoelectron spectroscopy of small tellurium clusters. J. Non-Cryst. Solids 312-314, 337 (2002). https://doi.org/10.1016/S0022-3093(02)01712-X

C. Br'echignac, Ph. Cahuzac, M. de Frutos, P. Garnier, N. Kebaili. Dissociation energies of tellurium cluster ions from thermoevaporation experiments. J. Chem. Phys. 103, 6631 (1995). https://doi.org/10.1063/1.470392

J. Akola, R.O. Jones. Structure and dynamics in amorphous tellurium and Ten clusters: A density functional study. Phys. Rev. B 85, 134103 (2012). https://doi.org/10.1103/PhysRevB.85.134103

B.C. Pan. Geometric structures, electronic properties, and vibrational frequencies of small tellurium clusters. Phys. Rev. B 65, 085407 (2002). https://doi.org/10.1103/PhysRevB.65.085407

O.M. Uy, J. Drowart. Mass spectrometric determination of the dissociation energies of the molecules BiO, BiS, BiSe and BiTe. Trans. Faraday Soc. 65, 3221 (1969). https://doi.org/10.1039/tf9696503221

O.M. Uy, D.W.Muenow, P.J. Ficalora, J.L. Margrave. Mass spectrometric studies at high temperatures. Part 30. Vaporization of Ga2S3, Ga2Se3 and Ga2Te3, and stabilities of the gaseous gallium chalcogenides. Trans. Faraday Soc. 64, 2998 (1968). https://doi.org/10.1039/TF9686402998

Опубліковано

2020-07-15

Як цитувати

Shpenik, O., Zavilopulo, A., Remeta, E., Demes, S., & Erdevdy, M. (2020). Непружні процеси взаємодії електронів з халькогенами в газовій фазі. Український фізичний журнал, 65(7), 557. https://doi.org/10.15407/ujpe65.7.557

Номер

Розділ

Оптика, атоми і молекули