Вплив тангенціального зсуву на силу адгезії між градієнтними матеріалами

Автор(и)

  • I. A. Lyashenko Technische Universit¨at Berlin, Institut f¨ur Mechanik, FG Systemdynamik und Reibungsphysik, Sekr. C8–4, Raum M 122, Sumy State University
  • Z. M. Liashenko Сумський державний університет

DOI:

https://doi.org/10.15407/ujpe65.3.205

Ключові слова:

адгезiя, трибологiя, чисельне моделювання, метод редукцiї розмiрностi

Анотація

Дослiджується вплив тангенцiального змiщення на мiцнiсть адгезiйного контакту для градiєнтних матерiалiв iз рiзним ступенем градiєнтностi. Розглядаються умови контрольованої сили i контрольованого змiщення. Для всього дiапазону параметра градiєнтностi, для якого справедливий критерiй вiдриву, розраховане спiввiдношення мiж критичними нормальною i тангенцiальною компонентами сили, за яких вiдбувається руйнування контакту. Знайдено оптимальнi параметри, при яких мiцнiсть адгезiйного контакту набуває максимальних значень. Окремо розглянуто випадок, у якому контакт руйнується лише за рахунок тангенцiального змiщення, коли нормальна сила набуває нульового значення.

Посилання

Functionally Graded Materials: Design, Processing and Applications. Edited by Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford (Springer, 1999) [ISBN: 978-1-4615-5301-4].

A. Gupta, T. Mohammad. Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1 (2015). https://doi.org/10.1016/j.paerosci.2015.07.001

I. Argatov, A. Iantchenko. Rayleigh surface waves in functionally graded materials - long-wave limit. Q. J. Mech. Appl. Math. 72, 197 (2019). https://doi.org/10.1093/qjmam/hbz002

F. Jin, X. Guo, W. Zhang. A unified treatment of axisymmetric adhesive contact on a powerlaw graded elastic half-space. J. Appl. Mech. 80, 061024 (2013). https://doi.org/10.1115/1.4023980

J. Aboudi, M.-J. Pindera, S.M. Arnold. Higher-order theory for functionally graded materials. Compos. Part B Eng. 30, 777 (1999). https://doi.org/10.1016/S1359-8368(99)00053-0

M. Hill, R. Carpenter, G. Paulino, Z. Munir, J. Gibeling. Fracture testing of a layered functionally graded material. In Fracture Resistance Testing of Monolithic and Composite Brittle Materials, edited by J. Salem, G. Quinn, M. Jenkins (ASTM International, 2002), p. 169. https://doi.org/10.1520/STP10478S

C.-E. Rousseau, V.B. Chalivendra, H.V. Tippur, A. Shukla. Experimental fracture mechanics of functionally graded materials: An overview of optical investigations. Exp. Mech. 7, 845 (2010). https://doi.org/10.1007/s11340-010-9381-z

V.L. Popov, R. Pohrt, Q. Li. Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction 5, 308 (2017). https://doi.org/10.1007/s40544-017-0177-3

E. Martinez-Paneda, R. Gallego. Numerical analysis of quasi-static fracture in functionally graded materials. Int. J. Mech. Mater. Des. 11, 405 (2015). https://doi.org/10.1007/s10999-014-9265-y

Q. Li, V.L. Popov. Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials. Comp. Mech. 61, 319 (2017). https://doi.org/10.1007/s00466-017-1461-9

Q. Li, R. Pohrt, I.A. Lyashenko, V.L. Popov. Boundary element method for nonadhesive and adhesive contacts of a coated elastic half-space. Proc. Inst. Mech. Eng. J. 234, 73 (2019). https://doi.org/10.1177/1350650119854250

V.L. Popov, M. Hess. Method of dimensionality reduction in contact mechanics and friction: a user's handbook. I. Axially-symmetric contacts. FU Mech. Eng. 12, 1 (2014).

M. Hess, V.L. Popov. Method of dimensionality reduction in contact mechanics and friction: a user's handbook. II. Power-law graded materials. FU Mech. Eng. 14, 251 (2016). https://doi.org/10.22190/FUME1603251H

M. Hess. A simple method for solving adhesive and non-adhesive axisymmetric contact problems of elastically graded materials. Int. J. Eng. Sci. 104, 20 (2014). https://doi.org/10.1016/j.ijengsci.2016.04.009

E. Willert, A.I. Dmitriev, S.G. Psakhie, V.L. Popov. Effect of elastic grading on fretting wear. Sci. Rep. 9, 7791 (2019). https://doi.org/10.1038/s41598-019-44269-1

I. Argatov. From Winkler's foundation to Popov's foundation. FU Mech. Eng. 17, 181 (2019). https://doi.org/10.22190/FUME190330024A

V.L. Popov, I.A. Lyashenko, A.E. Filippov. Influence of tangential displacement on the adhesion strength of a contact between a parabolic profile and an elastic half-space. Roy. Soc. Open Sci. 4, 161010 (2017). https://doi.org/10.1098/rsos.161010

K.L. Johnson, K. Kendall, A.D. Roberts. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301 (1971). https://doi.org/10.1098/rspa.1971.0141

I.A. Lyashenko, E. Willert, V.L. Popov. Adhesive impact of an elastic sphere with an elastic half space: Numerical analysis based on the method of dimensionality reduction. Mech. Mat. 92, 155 (2016). https://doi.org/10.1016/j.mechmat.2015.09.009

K.L. Johnson. Adhesion and friction between a smooth elastic spherical asperity and a plane surface. Proc. R. Soc. Lond. A 453, 163 (1997). https://doi.org/10.1098/rspa.1997.0010

I.A. Lyashenko. Tangential displacement influence on the critical normal force of adhesive contact breakage in biological systems. FU Mech. Eng. 14, 313 (2016). https://doi.org/10.22190/FUME1603313L

J.W. Hutchinson, Z. Suo. Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1991). https://doi.org/10.1016/S0065-2156(08)70164-9

E. Willert. Dugdale-Maugis adhesive normal contact of axisymmetric power-law graded elastic bodies. FU Mech. Eng. 16, 9 (2018). https://doi.org/10.22190/FUME171121003W

W. Deng, H. Kesari. Depth-dependent hysteresis in adhesive elastic contacts at large surface roughness. Sci. Rep. 9, 1639 (2019). https://doi.org/10.1038/s41598-018-38212-z

B.N.J. Persson. Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E 8, 385 (2002). https://doi.org/10.1140/epje/i2002-10025-1

Z. Liu, H. Lu, Y. Zheng, D. Tao, Y. Meng, Y. Tian. Transient adhesion in a non-fully detached contact. Sci. Rep. 8, 6147 (2018). https://doi.org/10.1038/s41598-018-24587-6

M. Scaraggi, D. Comingio. Rough contact mechanics for viscoelastic graded materials: The role of small-scale wave-lengths on rubber friction. Int. J. Solids Struct. 125, 276 (2017). https://doi.org/10.1016/j.ijsolstr.2017.06.008

L.D. Landau, E.M. Lifshitz. Theory of Elasticity (Pergamon Press, 1970) [ISBN: 9780080064659].

D.L. Holl. Stress transmission in earths. Highway Res. Board Proc. 20, 709 (1940).

F.M. Borodich, B.A. Galanov, Y.I. Prostov, M.M. Suarez-Alvarez. Influence of complete sticking on the indentation of a rigid cone into an elastic half space in the presence of molecular adhesion. J. Appl. Math. Mech. 76, 590 (2012). https://doi.org/10.1016/j.jappmathmech.2012.11.006

V.L. Popov, A.V. Dimaki. Friction in an adhesive tangential contact in the Coulomb-Dugdale approximation. J. Adhes. 93, 1131 (2017). https://doi.org/10.1080/00218464.2016.1214912

Опубліковано

2020-03-26

Як цитувати

Lyashenko, I. A., & Liashenko, Z. M. (2020). Вплив тангенціального зсуву на силу адгезії між градієнтними матеріалами. Український фізичний журнал, 65(3), 205. https://doi.org/10.15407/ujpe65.3.205

Номер

Розділ

Загальна фізика