Хвильова оптика у просторі Керра з врахуванням спін-спіральної взаємодії

Автор(и)

  • V. O. Pelykh Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Nat. Acad. of Sci. of Ukraine
  • Y. V. Taistra Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.11.1054

Ключові слова:

однонапрямлене iзотропне поле, спiнор Максвелла, простiр-час Керра, вiдокремлення змiнних, хвильовий вектор, геодезiйнi

Анотація

Ми застосовуємо алгебраїчно-спецiальний вихiдний в сенсi Чандрасекара розв’язок рiвнянь Максвелла у просторi Керра, отримуємо вирази хвильових векторiв право- та лiвополяризованих хвиль i доводимо, що з умови iзотропностi як умови рiвностi нулевi iнварiантiв поля не випливає iзотропнiсть хвильових векторiв, а також, що iнтегральна конгруенцiя хвильового векторного поля не є геодезiйною. Ми встановлюємо зв’язок отриманих результатiв iз умовою Старобiнського та Пресса-Тюкольського iснування супервипромiнювання в просторi-часi Керра.

Посилання

B.P. Abbott et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 6 (2016). https://gcn.gsfc.nasa.gov/gcn3/25333.gcn3.

K. Akiyama et al. First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. 875, (2019).

R. Konoplya, L. Rezzolla, A. Zhidenko. General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D 93, 064015 (2016). https://doi.org/10.1103/PhysRevD.93.064015

J. Abedi, H. Dykaar, N. Afshordi. Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons. Phys. Rev. D 96, 082004 (2017). https://doi.org/10.1103/PhysRevD.96.082004

A. Mitra, C. Corda, H.J. Mosquera Cuesta. How to distinguish an actual astrophysical magnetized black hole mimicker from a true (theoretical) black hole. http://arxiv.org/abs/1908.06815v1.

A. Starobinskii. Amplification of waves during reflection from a rotating "black hole". Zh. Eksp. Teor. Fiz. 64, 48 (1973).

W.H. Press, S.A. Teukolsky. Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211 (1972). https://doi.org/10.1038/238211a0

S. Teukolsky. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. The Astrophysical Journal 185, 635 (1973). https://doi.org/10.1086/152444

A. Starobinsky, S. Churilov. Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Sov. Phys. - JETP 38, 1 (1974).

S. Teukolsky. The Kerr metric. Astrophys. J. 32, 124006 (2015). https://doi.org/10.1088/0264-9381/32/12/124006

M. Casals, A. C. Ottewill, N. Warburton. High-order asymptotics for the spin-weighted spheroidal equation at large real frequency. arXiv:1810.00432v1 [gr-qc].

B. Mashhoon. Scattering of electromagnetic radiation from a black hole. Phys. Rev. D 7, 2807 (1973). https://doi.org/10.1103/PhysRevD.7.2807

V. Pelykh, Y. Taistra. A class of general solutions of the Maxwell equations in the Kerr space-time. J. Math. Sci. 229, No. 2, 162 (2018). https://doi.org/10.1007/s10958-018-3668-5

V. Pelykh, Y. Taistra. Solution with separable variables for null one-way Maxwell field in Kerr space-time. Acta Phys. Polon. Supp. 10, 387 (2017). https://doi.org/10.5506/APhysPolBSupp.10.387

V. Pelykh, Y. Taistra. Null one-way fields in the Kerr spacetime. Ukr. J. Phys. 62, No. 11, 1007 (2017). https://doi.org/10.15407/ujpe62.11.1007

V. Pelykh, Y. Taistra. On the null one-way solution to Maxwell equations in the Kerr space-time. Math. Model. Comput. 5, No. 2, 201 (2018). https://doi.org/10.23939/mmc2018.02.201

E. Guadagnini. Gravitational deflection of light and helicity asymmetry. Phys. Lett. B 548, Iss. 1-2, 19 (2002). https://doi.org/10.1016/S0370-2693(02)02811-3

A. Barbieri, E. Guadagnini. Gravitational optical activity. Nucl. Phys. 703, Iss. 1, 391 (2004). https://doi.org/10.1016/j.nuclphysb.2004.10.025

V. Frolov, A. Shoom. Scattering of circularly polarized light by a rotating black hole. Phys. Rev. D 86, Iss. 2, 024010 (2012). https://doi.org/10.1103/PhysRevD.86.024010

F. Asenjo, S. Hojman. Do electromagnetic waves always propagate along null geodesics? Class. and Quant. Gravity 34, No. 20, 205011 (2017). https://doi.org/10.1088/1361-6382/aa8b48

S. Chandrasekhar. On algebraically special perturbations of black holes. Proc. R. Soc. London, Ser. A 392, 1 (1984). https://doi.org/10.1098/rspa.1984.0021

R. Plyatsko. Manifestations of Gravitational Ultrarelativistic Spin-Orbit Interaction (Naukova Dumka, 1988) (in Ukrainian).

R. Plyatsko, M. Fenyk. Highly relativistic circular orbits of spinning particle in the Kerr field. Phys. Rev. D 87, No. 4, 044019 (2013). https://doi.org/10.1103/PhysRevD.87.044019

Опубліковано

2019-11-25

Як цитувати

Pelykh, V. O., & Taistra, Y. V. (2019). Хвильова оптика у просторі Керра з врахуванням спін-спіральної взаємодії. Український фізичний журнал, 64(11), 1054. https://doi.org/10.15407/ujpe64.11.1054

Номер

Розділ

Поля та елементарні частинки

Статті цього автора (авторів), які найбільше читають