Контактні взаємодії в одновимірній квантовій механіці: сім’я узагальнених б'-потенціалів
DOI:
https://doi.org/10.15407/ujpe64.11.1021Ключові слова:
точкова взаємодiя, проходження електронiв, резонансне тунелюванняАнотація
Для дослiдження проходження електронiв через надзвичайно тонкi гетероструктури, що складаються з двох паралельних плоских шарiв, пропонується використовувати “одноточкове” наближення. Типовим прикладом такої структури є подвiйний шар, що описується потенцiалом, який у границi стиснення до нульової товщини має вигляд похiдної дельта-функцiї Дiрака. Рiвняння Шредiнґера з цим
синґулярним одновимiрним потенцiальним профiлем породжує сiм’ю контактних (точкових) взаємодiй, кожна з яких (названа “потенцiалом б′-розподiлу”) залежить вiд способу реґуляризацiї. Використовуючи двомасштабну степенево-пов’язувану параметризацiю потенцiалу, що описує подвiйний шар, усунуто всi розбiжностi, якi досi широко дискутувались у лiтературi стосовно взаємодiї iз потенцiалом вигляду похiдної дельта-функцiї Дiрака. При застосовуваннi даної параметризацiї, стало можливим розширити сiм’ю потенцiалiв б′-розподiлу до цiлого класу “узагальнених” б′-потенцiалiв. Показано, що в границi стиснення подвiйного шару до нульової товщини резонансне тунелювання проявляється у виглядi гострих пiкiв, якi локалiзуються на множинах нульової мiри Лебеґа (названi резонансними множинами). Для представлення цих множин введено чотиривимiрний простiр параметрiв. Показано, що проходження електронiв на комплементарних множинах у цьому просторi є абсолютно вiдбиваючим.
Посилання
F.A. Berezin, L.D. Faddeev. Remark on the Schr?odinger equation with singular potential. Dokl. AN SSSR, 137, 1011 (1961).
Y.N. Demkov, V.N. Ostrovskii. Zero-Range Potentials and Their Applications in Atomic Physics (Plenum Press, 1988). https://doi.org/10.1007/978-1-4684-5451-2
S. Albeverio, F. Gesztesy, R. Hoegh-Krohn et al. Solvable Models in Quantum Mechanics, with appendix by P. Exner (Amer. Math. Soc., 2005). https://doi.org/10.1090/chel/350
S. Albeverio, P. Kurasov. Singular Perturbations of Differential Operators: Solvable Schr?odinger-Type Operators (Cambridge Univ. Press, 1999). https://doi.org/10.1017/CBO9780511758904
D.J. Griffiths. Boundary conditions at the derivative of a delta function. J. Phys. A: Math. Gen. 26, 2265 (1993). https://doi.org/10.1088/0305-4470/26/9/021
P. Kurasov. Distribution theory for discontinuous test functions and differential operators with generalized coefficients. J. Math. Anal. Appl. 201, 297 (1996). https://doi.org/10.1006/jmaa.1996.0256
S. Albeverio, L. Dabrowski, P. Kurasov. Symmetries of Schr?odinger operators with point interactions. Lett. Math. Phys. 45, 33 (1998). https://doi.org/10.1023/A:1007493325970
F.A.B. Coutinho, Y. Nogami, L. Tomio. Many-body system with a four-parameter family of point interactions in one dimension. J. Phys. A: Math. Gen. 32, 4931 (1999). https://doi.org/10.1088/0305-4470/32/26/311
S. Albeverio, L. Nizhnik. On the number of negative eigen-values of a one-dimensional Schr?odinger operator with point interactions. Lett. Math. Phys. 65, 27 (2003).
L.P. Nizhnik. A Schr?odinger operator with б?-interaction. Funct. Anal. Appl. 37, 72 (2003). https://doi.org/10.1023/A:1022932229094
S. Albeverio, L. Nizhnik. Schr?odinger operators with non-local point interactions. J. Math. Anal. Appl. 332, 884 (2007). https://doi.org/10.1016/j.jmaa.2006.10.070
M. Gadella, J. Negro, L.M. Nieto. Bound states and scattering coefficients of the ?аб(x)+bб?(x) potential. Phys. Lett. A 373, 1310 (2009). https://doi.org/10.1016/j.physleta.2009.02.025
M. Gadella, M.L. Glasser, L.M. Nieto. One dimensional models with a singular potential of the type ?аб(x)+bб?(x). Int. J. Theor. Phys. 50, 2144 (2011). https://doi.org/10.1007/s10773-010-0641-6
R.-J. Lange. Potential theory, path integrals and the Laplacian of the indicator. J. High Energy Phys. 11, 1 (2012). https://doi.org/10.1007/JHEP11(2012)032
J.F. Brasche, L.P. Nizhnik. One-dimensional Schr?odinger operators with general point interactions. Methods Funct. Anal. Topology 19, 4 (2013).
J.T. Lunardi, L.A. Manzoni, W. Monteiro. Remarks on point interactions in quantum mechanics. J. Phys. Conf. Series 410, 012072 (2013). https://doi.org/10.1088/1742-6596/410/1/012072
M. Calcada M, J.T. Lunardi, L.A. Manzoni et al. Distributional approach to point interactions in one-dimensional quantum mechanics. Front. Phys. (2014) 2, 23 (2014). https://doi.org/10.3389/fphy.2014.00023
R.-J. Lange. Distribution theory for Schr?odinger's integral equation. J. Math. Phys. 56, 122105 (2015). https://doi.org/10.1063/1.4936302
V.L. Kulinskii, D.Y. Panchenko. Physical structure of point-like interactions for one-dimensional Schr?odinger operator and the gauge symmetry. Physica B (2015) 472, 78 (2015). https://doi.org/10.1016/j.physb.2015.05.011
P. Seba. Some remarks on the б?-interaction in one dimension. Rep. Math. Phys. 24, 111 (1986). https://doi.org/10.1016/0034-4877(86)90045-5
T. Cheon, T. Shigehara. Realizing discontinuous wave functions with renormalized short-range potentials. Phys. Lett. A 243, 111 (1998). https://doi.org/10.1016/S0375-9601(98)00188-1
P. Exner, H. Neidhardt, V.A. Zagrebnov. Potential approximations to б?: An inverse Klauder phenomenon with norm-resolvent convergence. Commun. Math. Phys. (2001) 224, 593 (2001). https://doi.org/10.1007/s002200100567
P.L. Christiansen, N.C. Arnbak, A.V. Zolotaryuk et al. On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac's delta function. J. Phys. A: Math. Gen. 36, 7589 (2003). https://doi.org/10.1088/0305-4470/36/27/311
A.V. Zolotaryuk, P.L. Christiansen, S.V. Iermakova. Scattering properties of point dipole interactions. J. Phys. A: Math. Gen. 39, 9329 (2006). https://doi.org/10.1088/0305-4470/39/29/023
F.M. Toyama, Y. Nogami. Transmission-reflection problem with a potential of the form of the derivative of the delta function. J. Phys. A: Math. Theor. 40, F685 (2007). https://doi.org/10.1088/1751-8113/40/29/F05
Y.D. Golovaty, S.S. Man'ko. Solvable models for the Schr?odinger operators with б?-like potentials. Ukr. Math. Bull. 6, 169 (2009).
Y.D. Golovaty, R.O. Hryniv. On norm resolvent convergence of Schr?odinger operators with б?-like potentials. J. Phys. A: Math. Theor. 43, 155204 (2010); 44, 049802 (2011). https://doi.org/10.1088/1751-8113/44/4/049802
A.V. Zolotaryuk. Boundary conditions for the states with resonant tunnelling across the б?-potential. Phys. Lett. A 374, 1636 (2010). https://doi.org/10.1016/j.physleta.2010.02.005
Y.D. Golovaty, R.O. Hryniv. Norm resolvent convergence of singularly scaled Schr?odinger operators and б?-potentials. Proc. Royal Soc. Edinb. 143A, 791 (2013). https://doi.org/10.1017/S0308210512000194
Y. Golovaty. 1D Schr?odinger operators with short range interactions: two-scale regularization of distributional potentials. Integr. Equ. Oper. Theory 75, 341 (2013). https://doi.org/10.1007/s00020-012-2027-z
A.V. Zolotaryuk, Y. Zolotaryuk. Intrinsic resonant tunneling properties of the one-dimensional Schr?odinger operator with a delta derivative potential. Int. J. Mod. Phys. B 28, 1350203 (2014). https://doi.org/10.1142/S0217979213502032
A.V. Zolotaryuk, Y. Zolotaryuk. A zero-thickness limit of multilayer structures: a resonant-tunnelling б?-potential. J. Phys. A: Math. Theor. 48, 035302 (2015). https://doi.org/10.1088/1751-8113/48/3/035302
A.V. Zolotaryuk. Families of one-point interactions resulting from the squeezing limit of the sum of two- and three-delta-like potentials. J. Phys. A: Math. Theor. 50, 225303 (2017). https://doi.org/10.1088/1751-8121/aa6dc2
A.V. Zolotaryuk. A phenomenon of splitting resonant-tunneling one-point interactions. Ann. Phys. (NY) 396, 479 (2018). https://doi.org/10.1016/j.aop.2018.07.030
A.V. Zolotaryuk, G.P. Tsironis, Y. Zolotaryuk. Point interactions with bias potentials. Front. Phys. 7, 1 (2019). https://doi.org/10.3389/fphy.2019.00087
Y. Golovaty. Two-parametric б?-interactions: approximation by Schr?odinger operators with localized rank-two perturbations. J. Phys. A: Math. Theor. 51, 255202 (2018). https://doi.org/10.1088/1751-8121/aac110
S. Albeverio, L. Nizhnik. Schr?odinger operators with non-local potentials. Methods Funct. Anal. Topology 19, 199 (2013).
S. Albeverio, S. Fassari, F. Rinaldi. A remarkable spectral feature of the Schr?odinger Hamiltonian of the harmonic oscillator perturbed by an attractive б?-interaction centred at the origin: double degeneracy and level crossing. J. Phys. A: Math. Theor. 46, 385305 (2013). https://doi.org/10.1088/1751-8113/46/38/385305
S. Albeverio, F. Fassari, F. Rinaldi. The Hamiltonian of the harmonic oscillator with an attractive б?-interaction centred at the origin as approximated by the one with a triple of attractive б-interactions. J. Phys. A: Math. Theor. 49, 025302 (2016). https://doi.org/10.1088/1751-8113/49/2/025302
S.H. Patil. Schr?odinger equation with б? and б?? potentials. Phys. Scripta 49, 645 (1994). https://doi.org/10.1088/0031-8949/49/6/002
A.V. Zolotaryuk. An explicit realization of resonant-tunnelling б??-potentials. J. Phys. A: Math. Theor. 48, 255304 (2015). https://doi.org/10.1088/1751-8113/48/25/255304
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.