Інфляційний магнітогенез з гелікальним зв’язком

Автор(и)

  • Yu. V. Shtanov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine, Astronomical Observatory, Taras Shevchenko National University of Kyiv
  • M. V. Pavliuk Department of Physics, Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe64.11.1009

Ключові слова:

первiснi магнiтнi поля, iнфляцiя

Анотація

Описано простий сценарiй iнфляцiйного магнiтогенезу, оснований на гелiкальному зв’язку з електромагнетизмом. Вiн дозволяє генерувати гелiкальнi магнiтнi поля з напруженiстю до 10−7 Гс у сучасну епоху у вузькiй спектральнiй смузi, центрованiй на довiльному фiзичному хвильовому числi, через налаштування параметрiв моделi. Додатковi обмеження на магнiтне поле виникають iз теорiї барiогенезу та, ймовiрно, з ефекту Швiнгера народження заряджених пар частинок-античастинок.

Посилання

U. Klein, A. Fletcher. Galactic and Intergalactic Magnetic Fields (Springer, 2015) [ISBN: 978-3-319-08941-6]. https://doi.org/10.1007/978-3-319-08942-3

F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda, P. Coppi. The intergalactic magnetic field constrained by Fermi/Large Area Telescope observations of the TeV blazar 1ES 0229+200. Mon. Not. Roy. Astron. Soc. 406, L70 (2010). https://doi.org/10.1111/j.1745-3933.2010.00884.x

S. Ando, A. Kusenko. Evidence for gamma-ray halos around active galactic nuclei and the first measurement of intergalactic magnetic fields. Astrophys. J. 722, L39 (2010). https://doi.org/10.1088/2041-8205/722/1/L39

A. Neronov, I. Vovk. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010). https://doi.org/10.1126/science.1184192

K. Dolag, M. Kachelriess, S. Ostapchenko, R. Tom'as. Lower limit on the strength and filling factor of extragalactic magnetic fields. Astrophys. J. Lett. 727, L4 (2011). https://doi.org/10.1088/2041-8205/727/1/L4

A.M. Taylor, I. Vovk, A. Neronov. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 529, A144 (2011). https://doi.org/10.1051/0004-6361/201116441

R. Durrer, A. Neronov. Cosmological magnetic fields: Their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013). https://doi.org/10.1007/s00159-013-0062-7

K. Subramanian. The origin, evolution and signatures of primordial magnetic fields. Rept. Prog. Phys. 79, 076901 (2016). https://doi.org/10.1088/0034-4885/79/7/076901

M.S. Turner, L.M. Widrow. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988). https://doi.org/10.1103/PhysRevD.37.2743

B. Ratra. Cosmological "seed" magnetic field from inflation. Astrophys. J. 391, L1 (1992). https://doi.org/10.1086/186384

V. Demozzi, V. Mukhanov, H. Rubinstein. Magnetic fields from inflation? JCAP 08, 025 (2009). https://doi.org/10.1088/1475-7516/2009/08/025

F.R. Urban. On inflating magnetic fields, and the backreactions thereof. JCAP 12, 012 (2011). https://doi.org/10.1088/1475-7516/2011/12/012

H. Bazrafshan Moghaddam, E. McDonough, R. Namba, R.H. Brandenberger. Inflationary magneto-(non)genesis, increasing kinetic couplings, and the strong coupling problem. Class. Quant. Grav. 35, 105015 (2018). https://doi.org/10.1088/1361-6382/aaba22

C. Caprini, L. Sorbo. Adding helicity to inflationary magnetogenesis. JCAP 10, 056 (2014). https://doi.org/10.1088/1475-7516/2014/10/056

R. Sharma, S. Jagannathan, T.R. Seshadri, K. Subramanian. Challenges in inflationary magnetogenesis: Constraints from strong coupling, backreaction, and the Schwinger effect. Phys. Rev. D 96, 083511 (2017). https://doi.org/10.1103/PhysRevD.96.083511

R. Sharma, K. Subramanian, T.R. Seshadri. Generation of helical magnetic field in a viable scenario of inflationary magnetogenesis. Phys. Rev. D 97, 083503 (2018). https://doi.org/10.1103/PhysRevD.97.083503

R. Durrer, L. Hollenstein, R.K. Jain. Can slow roll inflation induce relevant helical magnetic fields? JCAP 03, 037 (2011). https://doi.org/10.1088/1475-7516/2011/03/037

R.K. Jain, R. Durrer, L. Hollenstein. Generation of helical magnetic fields from inflation. J. Phys. Conf. Ser. 484, 012062 (2014). https://doi.org/10.1088/1742-6596/484/1/012062

T. Fujita, R. Namba, Y. Tada, N. Takeda, H. Tashiro. Consistent generation of magnetic fields in axion inflation models. JCAP 1505, 054 (2015). https://doi.org/10.1088/1475-7516/2015/05/054

L. Campanelli. Helical magnetic fields from inflation. Int. J. Mod. Phys. D 18, 1395 (2009). https://doi.org/10.1142/S0218271809015175

Y. Shtanov. Viable inflationary magnetogenesis with helical coupling. JCAP 10, 008 (2019). https://doi.org/10.1088/1475-7516/2019/10/008

K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov. A non-perturbative analysis of the finite-T phase transition in SU(2)?U(1) electroweak theory. Nucl. Phys. B 493, 413 (1997). https://doi.org/10.1016/S0550-3213(97)00164-8

M. D'Onofrio, K. Rummukainen. Standard model crossover on the lattice. Phys. Rev. D 93, 025003 (2016). https://doi.org/10.1103/PhysRevD.93.025003

M. Giovannini, M.E. Shaposhnikov. Primordial magnetic fields, anomalous matter-antimatter fluctuations and big bang nucleosynthesis. Phys. Rev. Lett. 80, 22 (1998). https://doi.org/10.1103/PhysRevLett.80.22

M. Giovannini, M.E. Shaposhnikov. Primordial hypermagnetic fields and triangle anomaly. Phys. Rev. D 57, 2186 (1998). https://doi.org/10.1103/PhysRevD.57.2186

K. Bamba. Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism. Phys. Rev. D 74, 123504 (2006). https://doi.org/10.1103/PhysRevD.74.123504

M.M. Anber, E. Sabancilar. Hypermagnetic fields and baryon asymmetry from pseudoscalar inflation. Phys. Rev. D 92, 101501(R) (2015). https://doi.org/10.1103/PhysRevD.92.101501

T. Fujita, K. Kamada. Large-scale magnetic fields can explain the baryon asymmetry of the Universe. Phys. Rev. D 93, 083520 (2016). https://doi.org/10.1103/PhysRevD.93.083520

K. Kamada, A.J. Long. Baryogenesis from decaying magnetic helicity. Phys. Rev. D 94, 063501 (2016). https://doi.org/10.1103/PhysRevD.94.063501

K. Kamada, A.J. Long. Evolution of the baryon asymmetry through the electroweak crossover in the presence of a helical magnetic field. Phys. Rev. D 94, 123509 (2016). https://doi.org/10.1103/PhysRevD.94.123509

D. Jim?enez, K. Kamada, K. Schmitz, X.-J. Xu. Baryon asymmetry and gravitational waves from pseudoscalar inflation. JCAP 12, 011 (2017). https://doi.org/10.1088/1475-7516/2017/12/011

NIST Handbook of Mathematical Functions F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.) (NIST & Cambridge Univ. Press, 2010) [ISBN: 978-0-521-19225-5].

T. Kobayashi, N. Afshordi. Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe. JHEP 1410, 166 (2014). https://doi.org/10.1007/JHEP10(2014)166

O.O. Sobol, E.V. Gorbar, M.Kamarpour, S.I. Vilchinskii. Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis. Phys. Rev. D 98, 063534 (2018). https://doi.org/10.1103/PhysRevD.98.063534

O.O. Sobol, E.V. Gorbar, S.I. Vilchinskii. Backreaction of electromagnetic fields and the Schwinger effect in pseudoscalar inflation magnetogenesis. Phys. Rev. D 100, 063523 (2019). https://doi.org/10.1103/PhysRevD.100.063523

Опубліковано

2019-11-25

Як цитувати

Shtanov, Y. V., & Pavliuk, M. V. (2019). Інфляційний магнітогенез з гелікальним зв’язком. Український фізичний журнал, 64(11), 1009. https://doi.org/10.15407/ujpe64.11.1009

Номер

Розділ

Поля та елементарні частинки