Дослідження провідності композитів на основі твердих розчинів (Cu1–xAgx)7GeSe5I

Автор(и)

  • A. I. Pogodin Uzhhorod National University
  • M. M. Luchynets Uzhhorod National University
  • V. I. Studenyak Uzhhorod National University
  • O. P. Kokhan Uzhhorod National University
  • I. P. Studenyak Uzhhorod National University
  • P. Kúš Comenius University

DOI:

https://doi.org/10.15407/ujpe65.1.55

Ключові слова:

solid solutions, composites, cation substitution, electrical conductivity, activation energy, compositional dependence

Анотація

Виготовленi полiмернi композити на основi твердих розчинiв (Cu1−xAgx)7GeSe5I. Вимiряно їх провiднiсть методом iмпедансної спектроскопiї на частотах вiд 20 до 2·106 Гц при температурах 292–338 K. Отримано частотну залежнiсть загальної провiдностi, побудованi графiки Найквiста i дано їх аналiз. З урахуванням залежностi вiд композицiї вивчено дiю замiни Cu+ →Ag+ на загальну провiднiсть, енергiю активацiї i на електронну та iонну компоненти провiдностi композитiв на основi твердих розчинiв (Cu1−xAgx)7GeSe5I.

Посилання

W.F. Kuhs, R. Nitsche, K. Scheunemann. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 14, 241 (1979). https://doi.org/10.1016/0025-5408(79)90125-9

T. Nilges, A. Pfitzner. A structural differentiation of quaternary copper argirodites: Structure-property relations of high temperature ion conductors. Z. Kristallogr. 220, 281 (2005). https://doi.org/10.1524/zkri.220.2.281.59142

I.P. Studenyak, M. Kranj˘cec, M.V. Kurik. Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−xIx superionic conductors. J. Phys. Chem. Solids 67, 807 (2006). https://doi.org/10.1016/j.jpcs.2005.10.184

C. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 215, 93 (2016). https://doi.org/10.1016/j.electacta.2016.08.081

N.C. Rosero-Navarro, T. Kinoshita, A. Miura, M. Higuchi, K. Tadanaga. Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics 23, 1619 (2017). https://doi.org/10.1007/s11581-017-2106-x

S. Wenzel, S.J. Seldmaier, C. Dietrich, W.G. Zeier, J. Janek. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 318, 102 (2018). https://doi.org/10.1016/j.ssi.2017.07.005

I.P. Studenyak, M. Kranjcec, Gy.Sh. Kovacs, I.D. Desnica-Frankovic, A.A. Molnar, V.V. Panko, V.Yu. Slivka. Electrical and optical absoprtion studies of Cu7GeS5I fast-ion conductor. Phys. Chem. Solids 63, 267 (2002). https://doi.org/10.1016/S0022-3697(01)00139-1

Y. Tomm, S. Schorr, S. Fiechter. Crystal growth of argyrodite-type phases Cu8−xGeS6−xIx and Cu8−xGeSe6−xIx (0 < x < 0.8). J. Cryst. Growth 310, 2215 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.184

I.P. Studenyak, O.P. Kokhan, M. Kranjcec, V.V. Bilanchuk, V.V. Panko. Influence of S→ Se substitution on chemical and physical properties of Cu7Ge(S1−xSex)5I superionic solid solutions. J. Phys. Chem. Solids 68, 1881 (2007). https://doi.org/10.1016/j.jpcs.2007.05.015

I.P. Studenyak, V.V. Bilanchuk, O.P. Kokhan, Yu.M. Stasyuk, A.F. Orliukas, A. Ke˘zionis, E. Kazakevicius, T. Salkus. Electrical conductivity, electrochemical and optical properties of Cu7GeS5I-Cu7GeSe5I superionic solid solutions. Lit. J. Phys. 49, 203 (2009). https://doi.org/10.3952/lithjphys.49209

I.P. Studenyak, M. Kranj˘cec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor. J. Phys. Chem. Solids 70, 1478 (2009). https://doi.org/10.1016/j.jpcs.2009.09.003

I.P. Studenyak, M. Kranjcec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, A. Ke˘zionis, E. Kazakevicius, T. Salkus. Temperature and compositional behaviour of electrical conductivity and optical absorption edge in Cu7Ge(S1−xSex)5I mixed superionic crystals. Solid State Ionics 181, 1596 (2010). https://doi.org/10.1016/j.ssi.2010.09.021

I.P. Studenyak, A.I. Pogodin, O.P. Kokhan, V. Kavaliuke, T. Salkus, A. Kezionis, A.F. Orliukas. Crystal growth, structural and electrical properties of (Cu1−xAgx)7GeS5I superionic solid solutions. Solid State Ionics 329, 119 (2019). https://doi.org/10.1016/j.ssi.2018.11.020

M. Laqibi, B. Cros, S. Peytavin, M. Ribes. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I)-synthesis and electrical studies. Solid State Ionics 23, 21 (1987). https://doi.org/10.1016/0167-2738(87)90077-4

A. Zerouale, B. Cros, B. Deroide, M. Ribes. Electrical properties of Ag7GeSe5I. Solid State Ionics 28-30, 1317 (1988). https://doi.org/10.1016/0167-2738(88)90378-5

R. Belin, A. Zerouale, A. Pradel, M. Ribes. Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra. Solid State Ionics 143, 445 (2001). https://doi.org/10.1016/S0167-2738(01)00883-9

R. Belin, L. Aldon, A. Zerouale, C. Belin, M. Ribes. Crystal structure of the non-stoichiometric argyrodite compound Ag7−xGeSe5I1−x (x = 0.31). A highly disordered silver superionic conducting material. Solid State Sciences 3, 251 (2001). https://doi.org/10.1016/S1293-2558(00)01108-0

A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus, I.P. Studenyak, R.Yu. Buchuk, I.P. Prits, V.V. Panko. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics 180, 183 (2009). https://doi.org/10.1016/j.ssi.2008.12.005

A.F. Orliukas, A. Kezionis, E. Kazakevicius, T. Salkus, M.I. Kayla, M. Kranj˘cec, I.P. Studenyak. Electrical conductivity of superionic composites based on Cu6P1−xAsxS5I solid solutions. Solid State Ionics 251, 83 (2013). https://doi.org/10.1016/j.ssi.2013.02.007

I.P. Studenyak, R.Yu. Buchuk, A.V. Bendak, O.O. Yamkovy, E. Kazakevicius, T. Salkus, A. Kezionis, A.F. Orliukas. Electric conductivity studies of composites based on (Cu1−xAgx)6PS5I superionic conductors. Semiconductor Physics, Quantum Electronics & Optoelectronics 17, 425 (2014). https://doi.org/10.15407/spqeo17.04.425

V.Yu. Izai, V.I. Studenyak, A.I. Pogodin, I.P. Studenyak, M. Rajn'ak, J. Kurimsky, M. Timko, P. Kopcansk'y. Electrical and dielectrical properties of composites based on (Ag1−xCux)7GeS5I mixed crystals. Semiconductor Physics, Quantum Electronics & Optoelectronics 21, 387 (2018). https://doi.org/10.15407/spqeo21.04.387

M.E. Orazem, B. Tribollet. Electrochemical Impedance Spectroscopy (Wiley, 2008). https://doi.org/10.1002/9780470381588

A.K. Ivanov-Schitz, I.V. Murin. Solid State Ionics (St.- Petersburg Univ. Press, 2001) (in Russian).

R.A. Huggins, Simple method to determine electronic and ionic components of the conductivity in mixed conductors: a review. Ionics 8, 300 (2002). https://doi.org/10.1007/BF02376083

Downloads

Опубліковано

2020-02-03

Як цитувати

Pogodin, A. I., Luchynets, M. M., Studenyak, V. I., Kokhan, O. P., Studenyak, I. P., & Kúš, P. (2020). Дослідження провідності композитів на основі твердих розчинів (Cu1–xAgx)7GeSe5I. Український фізичний журнал, 65(1), 55. https://doi.org/10.15407/ujpe65.1.55

Номер

Розділ

Напівпровідники і діелектрики

Статті цього автора (авторів), які найбільше читають