Дослідження провідності композитів на основі твердих розчинів (Cu1–xAgx)7GeSe5I
DOI:
https://doi.org/10.15407/ujpe65.1.55Ключові слова:
solid solutions, composites, cation substitution, electrical conductivity, activation energy, compositional dependenceАнотація
Виготовленi полiмернi композити на основi твердих розчинiв (Cu1−xAgx)7GeSe5I. Вимiряно їх провiднiсть методом iмпедансної спектроскопiї на частотах вiд 20 до 2·106 Гц при температурах 292–338 K. Отримано частотну залежнiсть загальної провiдностi, побудованi графiки Найквiста i дано їх аналiз. З урахуванням залежностi вiд композицiї вивчено дiю замiни Cu+ →Ag+ на загальну провiднiсть, енергiю активацiї i на електронну та iонну компоненти провiдностi композитiв на основi твердих розчинiв (Cu1−xAgx)7GeSe5I.
Посилання
W.F. Kuhs, R. Nitsche, K. Scheunemann. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 14, 241 (1979). https://doi.org/10.1016/0025-5408(79)90125-9
T. Nilges, A. Pfitzner. A structural differentiation of quaternary copper argirodites: Structure-property relations of high temperature ion conductors. Z. Kristallogr. 220, 281 (2005). https://doi.org/10.1524/zkri.220.2.281.59142
I.P. Studenyak, M. Kranj˘cec, M.V. Kurik. Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−xIx superionic conductors. J. Phys. Chem. Solids 67, 807 (2006). https://doi.org/10.1016/j.jpcs.2005.10.184
C. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 215, 93 (2016). https://doi.org/10.1016/j.electacta.2016.08.081
N.C. Rosero-Navarro, T. Kinoshita, A. Miura, M. Higuchi, K. Tadanaga. Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics 23, 1619 (2017). https://doi.org/10.1007/s11581-017-2106-x
S. Wenzel, S.J. Seldmaier, C. Dietrich, W.G. Zeier, J. Janek. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 318, 102 (2018). https://doi.org/10.1016/j.ssi.2017.07.005
I.P. Studenyak, M. Kranjcec, Gy.Sh. Kovacs, I.D. Desnica-Frankovic, A.A. Molnar, V.V. Panko, V.Yu. Slivka. Electrical and optical absoprtion studies of Cu7GeS5I fast-ion conductor. Phys. Chem. Solids 63, 267 (2002). https://doi.org/10.1016/S0022-3697(01)00139-1
Y. Tomm, S. Schorr, S. Fiechter. Crystal growth of argyrodite-type phases Cu8−xGeS6−xIx and Cu8−xGeSe6−xIx (0 < x < 0.8). J. Cryst. Growth 310, 2215 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.184
I.P. Studenyak, O.P. Kokhan, M. Kranjcec, V.V. Bilanchuk, V.V. Panko. Influence of S→ Se substitution on chemical and physical properties of Cu7Ge(S1−xSex)5I superionic solid solutions. J. Phys. Chem. Solids 68, 1881 (2007). https://doi.org/10.1016/j.jpcs.2007.05.015
I.P. Studenyak, V.V. Bilanchuk, O.P. Kokhan, Yu.M. Stasyuk, A.F. Orliukas, A. Ke˘zionis, E. Kazakevicius, T. Salkus. Electrical conductivity, electrochemical and optical properties of Cu7GeS5I-Cu7GeSe5I superionic solid solutions. Lit. J. Phys. 49, 203 (2009). https://doi.org/10.3952/lithjphys.49209
I.P. Studenyak, M. Kranj˘cec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor. J. Phys. Chem. Solids 70, 1478 (2009). https://doi.org/10.1016/j.jpcs.2009.09.003
I.P. Studenyak, M. Kranjcec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, A. Ke˘zionis, E. Kazakevicius, T. Salkus. Temperature and compositional behaviour of electrical conductivity and optical absorption edge in Cu7Ge(S1−xSex)5I mixed superionic crystals. Solid State Ionics 181, 1596 (2010). https://doi.org/10.1016/j.ssi.2010.09.021
I.P. Studenyak, A.I. Pogodin, O.P. Kokhan, V. Kavaliuke, T. Salkus, A. Kezionis, A.F. Orliukas. Crystal growth, structural and electrical properties of (Cu1−xAgx)7GeS5I superionic solid solutions. Solid State Ionics 329, 119 (2019). https://doi.org/10.1016/j.ssi.2018.11.020
M. Laqibi, B. Cros, S. Peytavin, M. Ribes. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I)-synthesis and electrical studies. Solid State Ionics 23, 21 (1987). https://doi.org/10.1016/0167-2738(87)90077-4
A. Zerouale, B. Cros, B. Deroide, M. Ribes. Electrical properties of Ag7GeSe5I. Solid State Ionics 28-30, 1317 (1988). https://doi.org/10.1016/0167-2738(88)90378-5
R. Belin, A. Zerouale, A. Pradel, M. Ribes. Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra. Solid State Ionics 143, 445 (2001). https://doi.org/10.1016/S0167-2738(01)00883-9
R. Belin, L. Aldon, A. Zerouale, C. Belin, M. Ribes. Crystal structure of the non-stoichiometric argyrodite compound Ag7−xGeSe5I1−x (x = 0.31). A highly disordered silver superionic conducting material. Solid State Sciences 3, 251 (2001). https://doi.org/10.1016/S1293-2558(00)01108-0
A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus, I.P. Studenyak, R.Yu. Buchuk, I.P. Prits, V.V. Panko. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics 180, 183 (2009). https://doi.org/10.1016/j.ssi.2008.12.005
A.F. Orliukas, A. Kezionis, E. Kazakevicius, T. Salkus, M.I. Kayla, M. Kranj˘cec, I.P. Studenyak. Electrical conductivity of superionic composites based on Cu6P1−xAsxS5I solid solutions. Solid State Ionics 251, 83 (2013). https://doi.org/10.1016/j.ssi.2013.02.007
I.P. Studenyak, R.Yu. Buchuk, A.V. Bendak, O.O. Yamkovy, E. Kazakevicius, T. Salkus, A. Kezionis, A.F. Orliukas. Electric conductivity studies of composites based on (Cu1−xAgx)6PS5I superionic conductors. Semiconductor Physics, Quantum Electronics & Optoelectronics 17, 425 (2014). https://doi.org/10.15407/spqeo17.04.425
V.Yu. Izai, V.I. Studenyak, A.I. Pogodin, I.P. Studenyak, M. Rajn'ak, J. Kurimsky, M. Timko, P. Kopcansk'y. Electrical and dielectrical properties of composites based on (Ag1−xCux)7GeS5I mixed crystals. Semiconductor Physics, Quantum Electronics & Optoelectronics 21, 387 (2018). https://doi.org/10.15407/spqeo21.04.387
M.E. Orazem, B. Tribollet. Electrochemical Impedance Spectroscopy (Wiley, 2008). https://doi.org/10.1002/9780470381588
A.K. Ivanov-Schitz, I.V. Murin. Solid State Ionics (St.- Petersburg Univ. Press, 2001) (in Russian).
R.A. Huggins, Simple method to determine electronic and ionic components of the conductivity in mixed conductors: a review. Ionics 8, 300 (2002). https://doi.org/10.1007/BF02376083
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.