Структура центрів матричного свічення у бездомішкових і легованих іонами РЗЕ кристалах вольфрамату свинцю типу шееліту
DOI:
https://doi.org/10.15407/ujpe64.9.837Ключові слова:
центр люмінесценції, рідкісноземельний іон, домішка, вольфрамат свинцю, свічення матриціАнотація
Стаття присвячена дослiдженню структури центрiв люмiнесценцiї кристалiв PbWO4 (PWO). Для отримання додаткової iнформацiї про склад спектрiв випромiнювання матрицi PWO та структури ї ї центрiв люмiнесценцiї було використано зразки з домiшками рiдкiсноземельних елементiв (РЗЕ). Проведений розклад спектрiв випромiнювання на окремi смуги показав, що при 10 К загальнi спектри всiх нелегованих i РЗЕ-легованих зразкiв складаються iз 5 смуг. Максимуми отриманих смуг становлять 1,95, 2,2, 2,45, 2,7, 3,0 еВ. Розглянуто вплив РЗЕ-легування та вiдпалу на вiдноснi iнтенсивностi цих смуг. Обговорюється природа люмiнесценцiї та структури центрiв, що беруть участь у процесах збудження та випромiнювання, якi вiдповiдають за кожну з видiлених смуг.
Посилання
R. Djilkibaev, L. Heinrich, A.I. Mincer, C. Musso, P. Nemethy, J. Sculli, A. Toropin, L. Zhao. Lead-tungstate scintillator studies for a fast low-energy calorimeter. J. Instrumentation 5, P01003 (2010). https://doi.org/10.1088/1748-0221/5/01/P01003
P. Lecoq. Ten years of lead tungstate development. Nucl. Instrum. Methods Phys. Res. A 537, 15 (2005). https://doi.org/10.1016/j.nima.2004.07.223
V.V. Laguta, M. Nikl, S. Zazubovich. Physics of lead tungstate scintillators. IEEE Trans. Nucl. Sci. 55, 1275 (2008). https://doi.org/10.1109/TNS.2007.907991
E. Auffray, M.V. Korzhik, S. Zazubovich. Luminescence and photothermally stimulated defects creation processes in PbWO 4 : La3+, Y3+ (PWO II) crystals. J. Lumin. 168, 256 (2015).https://doi.org/10.1016/j.jlumin.2015.08.028
K.W. Meert, J.J. Joos, D. Poelman, P.F. Smet. Investigation of the quenching mechanisms of Tb3+ doped scheelites. J. Lumin. 173, 263 (2016). https://doi.org/10.1016/j.jlumin.2015.12.045
D. Millers, L. Grigorjeva, S. Chernov, A. Popov, P. Lecoq, E. Auffray. The temperature dependence of scintillation parameters in PbWO4 crystals. Phys. Stat. Sol. (b) 203, 585 (1997). https://doi.org/10.1002/1521-3951(199710)203:2<585::AID-PSSB585>3.0.CO;2-8
M. Fujita, M. Itoh, M. Horimoto, H. Yokota. Fine structure of the exciton band and anisotropic optical constants in scheelite PbWO4 crystals. Phys. Rev. B 65, 195105 (2002). https://doi.org/10.1103/PhysRevB.65.195105
M. Itoh, T. Sakurai. Time-resolved luminescence from Jahn-Teller split states of self-trapped excitons in PbWO4. Phys. Rev. B 73, 235106 (2006). https://doi.org/10.1103/PhysRevB.73.235106
M. Anicete-Santos, E. Orhan, M.A. De Maurera, L.G.P. Sim˜oes, A.G. Souza, P.S. Pizani, E.R. Leite, J.A. Varela, J. Andres, A. Beltran, E. Longo. Contribution of structural order-disorder to the green photoluminescence of PbWO4. Phys. Rev. B 75, 165105 (2007). https://doi.org/10.1103/PhysRevB.75.165105
O. Antonenko, O. Chukova, Yu. Hizhnyi, S. Nedilko, V. Scherbatskyi. Luminescent characterization of lead tungstate crystals doped with europium, praseodymium, and ytterbium ions. Optical Materials 28, 643 (2006). https://doi.org/10.1016/j.optmat.2005.09.009
S. Burachas, A. Apanasenko, B. Grinyov, V. Ryzhikov, K. Katrunov, M. Starzhinskiy, M. Ippolitov, V. Manko, G. Tamulaitis. Improvement of optical and luminescent characteristics and radiation hardness of PbWO4 crystals by doping with Y, Sb, and Mo impurities. Int. J. Inorganic Materials 3, 1101 (2001). https://doi.org/10.1016/S1466-6049(01)00105-2
P. Lecoq. Organization of the production of 100 tons of lead tungstate crystals for the CMS experiment at CERN. Optical Materials 26, 523 (2004). https://doi.org/10.1016/j.optmat.2003.09.009
A.N. Caruso. The physics of solid-state neutron detector materials and geometries. J. Phys.: Condensed Matter 22, 443201 (2010). https://doi.org/10.1088/0953-8984/22/44/443201
D. Klimm, P. Reiche. Lead Tungstate (PWO) and other Scintillator Crystals. In: Encyclopedia of Materials: Science and Technology. Edited by K.H.J. Buschow et al. (Elsevier, 2001). https://doi.org/10.1016/B0-08-043152-6/00782-8
M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov. Development of growth technologies for the photonic single crystals by the Czochralski method at Institute for Single Crystals, NAS of Ukraine. Acta Phys. Polon. 124, 305 (2013). https://doi.org/10.12693/APhysPolA.124.305
X. Wang, B. Liu, Y. Yang. Luminescence properties of PbWO4 : Eu3+ nanocrystals synthesized by a hydrothermal method. Optics and Laser Technology 58, 84 (2014). https://doi.org/10.1016/j.optlastec.2013.11.003
R. Reisfeld. New developments in luminescence for solar energy utilization. Optical Materials 32, 850 (2011). https://doi.org/10.1016/j.optmat.2010.04.034
A. Hallaoui, A. Taoufyq, M. Arab, B. Bakiz, A. Benlhachemi, L. Bazzi, S. Villain, J-C. Valmalette, F. Guinneton, J-R. Gavarri. Influence of chemical substitution on the photoluminescence of Sr1−xPbxWO4 solid solution. J. Solid State Chem. 227, 186 (2015). https://doi.org/10.1016/j.jssc.2015.04.004
K.V. Dabre, S.J. Dhoble, J. Lochab. Synthesis and luminescence properties of Ce3+ doped MWO4 (M = Ca, Sr and Ba) microcrystalline phosphors. J. Lumin. 149, 348 (2014). https://doi.org/10.1016/j.jlumin.2014.01.048
Y. Zorenko, V. Gorbenko, A. Voloshinovskii, G. Stryganyuk, S. Nedilko, V. Degoda, O. Chukova. Luminescence of Sc-related centers in single crystalline films of Lu3Al5O12 garnet. Phys. Stat. Sol. (c) 2, 105 (2005). https://doi.org/10.1002/pssc.200460122
V.B. Mikhailik, H. Kraus, M. Itoh, D. Iri, M. Uchida. Radiative decay of self-trapped excitons in CaMoO4 and MgMoO4 crystals. J. Phys.: Condensed Matter 17, 7209 (2005). https://doi.org/10.1088/0953-8984/17/46/005
F. Kang, Y. Hu, H. Wu, Z. Mu, G. Ju, C. Fu, N. Li. Luminescence and red long afterglow investigation of Eu3+-Sm3+ co-doped CaWO4 phosphor. J. Lumin. 132, 887 (2012). https://doi.org/10.1016/j.jlumin.2011.11.022
N.V. Klassen, S.Z. Shmurak, B.S. Redkin, S.I. Rybchenko, V.V. Sinitzin. Processing technology and scintillation performance of PWO. In: Proc. Int. Workshop on Lead Tungstate Crystals. Roma, Italy, October 12-14, 1998. Edited by S. Baccaro et al., La Sapienza Press, pp. 35-47.
P. Bohachek, N. Solovieva, M. Nikl. Formation of absorption and emission centres in PbWO4 surface layers induced by mechanical processing. Phys. Stat. Sol. (c) 2, 81 (2005). https://doi.org/10.1002/pssc.200460116
S.G. Nedilko, A.S. Voloshinovskii, M.O. Krisjuk, Z.T. Moroz, M.V. Pashkovskyi. Impure and defect lead tungstate single crystals: X-ray and photoluminescence properties. In: Proceedings of SCINT'95 Conference. Edited by P. Dorenbos, C.W.E. van Eijk (Delft University Press, 1996), pp. 263-267 [ISBN: 9789040712159].
V. Babin, P. Bohachek, A. Krasnikov, M. Nikl, A. Stolovits, S. Zazubovich. Origin of green luminescence in PbWO4 crystals. J. Lumin. 124, 113 (2007). https://doi.org/10.1016/j.jlumin.2006.02.006
O. Chukova, S. Nedilko. Study of RE-impurity effects on exciton luminescence of PbWO4 single crystals grown by Czochralski method. Optical Materials 35, 1735 (2013). https://doi.org/10.1016/j.optmat.2013.05.019
P. Fabeni, V. Kiisk, A. Krasnikov, M. Nikl, G.P. Pazzi, I. Silidos, S. Zazubovich. Tunneling recombination processes in PbWO4 crystals. Phys. Stat. Sol. (c) 4, 918 (2007). https://doi.org/10.1002/pssc.200673742
P. Bohacek, N. Senguttuvan, V. Kiisk, A. Krasnikov, M. Nikl, I. Sildos, Y. Usuki, S. Zazubovich. Red emission of PbWO4 crystals. Radiation Measurements 38, 623 (2004). https://doi.org/10.1016/j.radmeas.2004.02.008
Y. Huang, W. Zhu. The effects of sequential annealing in air atmosphere on luminescence properties of PbWO4 single crystal. J. Electron Spectros. Rel. Phenomena 133, 39 (2003). https://doi.org/10.1016/S0368-2048(03)00140-3
T. Fujita, I. Kawada, K. Kato. BaWO4 − II (a high-pressure form). Acta Crystallogr. B 30, 2069 (1974). https://doi.org/10.1107/S0567740874006431
B.G. Wybourne. Spectroscopic Properties of Ions in Crystals (Wiley, 1965). https://doi.org/10.1063/1.3047727
O. Chukova, S. Nedilko, V. Scherbatskyi. Effects of RE doping on formation of emission centers in PbWO4 crystals. In: Proc. of Intern. Conf. SCINT, Alushta, 2005. Edited by A. Gektin, B. Grinyov (2006), pp. 212-215.
O. Chukova, S. Nedilko, V. Scherbatskyi. Luminescent spectroscopy of lead tungstate crystals doped with europium ions. Phys. Stat. Sol. (c) 4, 8970 (2007). https://doi.org/10.1002/pssc.200673711
M.U. Bilyi, M. Diab, L.M. Limarenko, Z.T. Moroz, S.G. Nedilko, M.V. Pashkovskyi. Energies of electron states of Dy3+, Sm3+ and Pr3+ impurity ions in the lead and cadmium tungstate crystals. Ukr. J. Phys. 43, 864 (1998).
A. Nosenko, L. Kostyk, L. Koslovska. Some peculiarities of the luminescence of the lead tungstate crystals. J. Lumin. 90, 49 (2000). https://doi.org/10.1016/S0022-2313(99)00606-7
P.A.M. Berdowski, J. Van Keulen, G. Blasse. Luminescence and energy migration characteristics of EuWO4Cl. J. Solid State Chem. 63, 284 (1986). https://doi.org/10.1016/0022-4596(86)90179-9
O. Chukova, S. Nedilko, V. Scherbatskyi. Luminescent spectroscopy and structure of centers of the impurity Eu3+ ions in lead tungstate crystals. J. Lumin. 130, 1805 (2010). https://doi.org/10.1016/j.jlumin.2010.04.014
Y. Huang, K.H. Jang, K. Jang, H.J. Seo. Luminescence spectra of Eu3+ ions and interstitial oxygen in PbWO4 crystal. Physica B 403, 75 (2008). https://doi.org/10.1016/j.physb.2007.08.014
Y. Huang, H.J. Seo. Multisite structure of PbWO4 : Eu3+ crystals investigated by site-selective laser-excitation spectroscopy. J. Phys. Chem. A 113, 5317 (2009). https://doi.org/10.1021/jp901099h
S. Burachas, S. Beloglovsky, I. Makov, Yu. Saveliev, N. Vassilieva, M. Ippolitov, V. Manko, S. Nikulin, A. Vassiliev, A. Apanasenko, G. Tamulaitis. Phase transition influence on characteristics of PbWO4 scintillators. Functional Materials 9, 297 (2002).
S. Burachas, S. Beloglovsky, I. Makov, Y. Saveliev, M. Ippolitov, V. Manko, S. Nikulin, A. Nyanin, A. Vassiliev, A. Apanasenko, G. Tamulaitis. Influence of variable tungsten valency on optical transmittance and radiation hardness of lead tungstate (PWO) scintillation crystals. Nucl. Instrum. Methods Phys. Res. A 505, 656 (2003). https://doi.org/10.1016/S0168-9002(03)00991-4
W. Li, X. Feng, Y. Huang. Effects of Cr doping on the optical characteristics of PbWO4 crystals. J. Lumin. 113, 109 (2005). https://doi.org/10.1016/j.jlumin.2004.09.112
T.T. Basiev, V.N. Baumer, Yu.N. Gorobets, M.E. Doroshenko, M.B. Kosmyna, B.P. Nazarenko, V.V. Osiko, V.M. Puzikov. Peculiarities of the growth of PbWO4:Nd3+ and PbMoO4:Nd3+ single crystals. Crystallography Reports 54, 697 (2009). https://doi.org/10.1134/S1063774509040269
W. Li, Y. Huang, X. Feng. The effects of Nd impurity on the optical, dielectric and electrical properties of PbWO4 single crystals. Phys. Stat. Sol. (a) 202, 2531 (2005). https://doi.org/10.1002/pssa.200520087
M. Bohm, A. Hofstaetter, M. Luh, B.K. Meyer, A. Sharmann, M.V. Korzhik, O.V. Kondratiev, A.E. Borisevich, V.V. Laguta, P. Lecoq, E. Auffray. Thermally stimulated luminescence properties of lead tungstate crystals. In: Proceedings of SCINT'99 Conference. Edited by V. Mikhailin (Moscow State University Press, 2000), pp. 619-626.
V.V. Laguta, M. Martini, A. Vedda, M. Nikl, E. Mihokova, P. Bohacek, J. Rosa. Photoinduced Pb+ center in PbWO4: Electron spin resonance and thermally stimulated luminescence study. Phys. Rev. B 64, 165102 (2001). https://doi.org/10.1103/PhysRevB.64.165102
J.A. Groenink, H. Binsma. Electrical conductivity and defect chemistry of PbMoO4 and PbWO4. J. Solid State Chem. 29, 227 (1979). https://doi.org/10.1016/0022-4596(79)90228-7
A.N. Annenkov, E. Auffray, M.V. Korzhik, P. Lecoq, J.P. Peigneux. On the origin of the transmission damage in lead tungstate crystals under irradiation. Phys. Stat. Sol. (a) 170, 47 (1998). https://doi.org/10.1002/(SICI)1521-396X(199811)170:1<47::AID-PSSA47>3.0.CO;2-W
C. Yang, G. Chen, P. Shi. Effect of lead vaporization in growth process on the luminescence property of PbWO4 crystal. J. Lumin. 93, 249 (2001). https://doi.org/10.1016/S0022-2313(01)00193-4
O. Chukova, S. Nedilko, V. Scherbatskyi. Effect of annealing on luminescence properties of the undoped and rare earth doped lead tungstate crystals. Optical Materials 34, 2071 (2012). https://doi.org/10.1016/j.optmat.2012.04.013
S. Nedilko, O. Chukova. Study of effects of rare earth impurities on structure of matrix emission of the lead tungstate crystals. IEEE Xplore, Conf. Proc. 6912376: Intern. Conf. on Oxide Materials for Electronic Engineering - fabrication properties and applications, 2014. https://doi.org/10.1109/OMEE.2014.6912376
L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink. Charge transfer luminescence of Yb3+. J. Lumin. 91, 177 (2000). https://doi.org/10.1016/S0022-2313(00)00214-3
I.A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, D. Spassky. Charge transfer fluorescence and f-f luminescence in ytterbium compounds. Optical Materials 24, 267 (2003). https://doi.org/10.1016/S0925-3467(03)00133-2
Y. Huang, X. Feng, W. Zhu. Thermal annealing behavior of luminescence of Gd3+-doped PbWO4 single crystal in air atmosphere. Appl. Phys. A 80, 409 (2005). https://doi.org/10.1007/s00339-003-2376-1
S. Nedilko, O. Chukova. Luminescent spectroscopy of the Yb3+ ions in the PbWO4 crystal. Acta Phys. Polon. 133, 918(2018). https://doi.org/10.12693/APhysPolA.133.918
M. Fujita, M. Itoh, H. Mitani, Sangeeta, M. Tyagi. Exciton transition and electronic structure of PbMoO4 crystals studied by polarized light. Phys. Stat. Sol. (b) 247, 405 (2010). https://doi.org/10.1002/pssb.200945447
P. Lecoq, I. Dafinei, E. Auffray, M. Schneegans, M.V. Korzhik, O.V. Missevitch, V.B. Pavlenko, A.A. Fedorov, A.N. Annenkov, V.L. Kostylev, V.D. Ligun. Lead tungstate (PbWO4) scintillators for LHC EM calorimetry. Nucl. Instrum. Methods Phys. Res. A 365, 291 (1995). https://doi.org/10.1016/0168-9002(95)00589-7
M. Itoh, H. Yokota, M. Horimoto, M. Fujita, Y. Usuki. Urbach Rule in PbWO4. Phys. Stat. Sol. (b) 231, 595 (2002). https://doi.org/10.1002/1521-3951(200206)231:2<595::AID-PSSB595>3.0.CO;2-W
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.