Influence of Atomic Disorder on the Auger Recombination Rate in p-InGaN Alloys

Authors

  • A. V. Zinovchuk Ivan Franko State University of Zhytomyr
  • E. A. Sevost’yanov Ivan Franko State University of Zhytomyr

DOI:

https://doi.org/10.15407/ujpe65.2.157

Keywords:

InGaN compounds, atomic disorder, Auger recombination, supercell

Abstract

The influence of the atomic disorder on the Auger recombination rate in p-InGaN alloys has been studied. The disorder was simulated using a 4 × 4 × 4 supercell in which In and Ga atoms taken in a required stoichiometric ratio were randomly distributed over the supercell sites. A comparison between the Auger recombination rates calculated in the framework of the supercell and virtual-crystal approximations showed that a large number of allowed interband transitions induced by the atomic disorder strongly increases the Auger recombination rate in wide-band-gap p-InGaN alloys.

References

Y. Zhao, H. Fu, G.T. Wang, S. Nakamura. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes. Adv. Opt. Photon. 10, 246 (2018). https://doi.org/10.1364/AOP.10.000246

Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames. Auger recombination in In-GaN measured by photoluminescence. Appl. Phys. Lett. 91, 14101 (2007). https://doi.org/10.1063/1.2785135

J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013). https://doi.org/10.1103/PhysRevLett.110.177406

J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, S. Lutgen. On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. 92, 261103 (2008). https://doi.org/10.1063/1.2953543

F. Bertazzi, M. Goano, E. Bellotti. Auger recombination in GaInN/GaN quantum well laser structures. Appl. Phys. Lett. 97, 231118 (2010). https://doi.org/10.1063/1.3525605

F. Bertazzi, M. Goano, E. Bellotti. Numerical analysis of indirect Auger transitions in InGaN. Appl. Phys. Lett. 101, 011111 (2012). https://doi.org/10.1063/1.4733353

E. Kioupakis, P. Rinke, K.T. Denaley, C.G. Van de Walle. Indirect Auger recombination as a cause of efficiency drop in nitride light-emitting diodes. Appl. Phys. Lett. 98, 161107 (2011). https://doi.org/10.1063/1.3570656

E. Kioupakis, D. Steiauf, P. Rinke, K.T. Delaney, C.G. Van de Walle. First-principles calculations of indirect Auger recombination in nitride semiconductors. Phys. Rev. B 92, 035207 (2015). https://doi.org/10.1103/PhysRevB.92.035207

A.V. Zinovchuk, A.M. Gryschuk. Alloy-assisted Auger recombination in InGaN. Opt. Quant. Electron. 50, 455 (2018). https://doi.org/10.1007/s11082-018-1704-9

V. Popescu, A. Zunger. Extracting E versus k effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B. 85, 085201 (2012). https://doi.org/10.1103/PhysRevB.85.085201

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, K. Brennan. Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN. J. Appl. Phys. 88, 6467 (2000). https://doi.org/10.1063/1.1309046

A.R. Tackett, M. Di Ventra. Targeting specific eigenvectors and eigenvalues of a given Hamiltonian using arbitrary selection criteria. Phys. Rev. B 66, 245104 (2002). https://doi.org/10.1103/PhysRevB.66.245104

D.B. Laks, G.F. Neumark, S.T. Pantelides. Accurate interband-Auger-recombination rates in silicon. Phys. Rev. B 42, 5176 (1990). https://doi.org/10.1103/PhysRevB.42.5176

G. Cappellini, R. Del Sole, L. Reining, F. Bechstedt. Model dielectric function for semiconductors. Phys. Rev. B 47, 9892 (1993). https://doi.org/10.1103/PhysRevB.47.9892

J. Piprek, F. Romer, B. Witzigmann. On the uncertainty of the Auger recombination coefficient extracted from In-GaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett. 106, 101101 (2015). https://doi.org/10.1063/1.4914833

Published

2020-03-03

How to Cite

Zinovchuk, A. V., & Sevost’yanov, E. A. (2020). Influence of Atomic Disorder on the Auger Recombination Rate in p-InGaN Alloys. Ukrainian Journal of Physics, 65(2), 157. https://doi.org/10.15407/ujpe65.2.157

Issue

Section

Semiconductors and dielectrics