Прояви існування колективного переносу в атомарних рідинах та рідких металах

Автор(и)

  • V.M. Makhlaichuk I.I. Mechnikov National University of Odesa

DOI:

https://doi.org/10.15407/ujpe66.3.247

Ключові слова:

тепловий рух молекул, колективний перенос, коефiцiєнт самодифузiї молекул рiдини

Анотація

В роботi дослiджується прояв колективних складових теплового руху “частинок” (молекул та iонiв) у поведiнцi їх ефективних радiусiв. Встановлено конкретний вигляд температурної залежностi ефективних радiусiв молекул та iонiв. Демонструється їх добре узгодження з гiдродинамiчними радiусами, що визначаються за формулою Айнштайна–Стокса. Звертається увага на вiдмiнностi мiж значеннями радiусiв частинок, що використовуються для опису термодинамiчних та кiнетичних властивостей рiдин.

Посилання

V.S. Oskotskii. To the theory of quasielastic scattering of cold neutrons in liquid. Fiz. Tverd. Tela 5, 1082 (1963) (in Russian).

I.Z. Fisher. Hydrodynamic asymptotics of autocorrelation function of molecular velocity in classical fluid. Zh. Eksp. Teor. Fiz. 61, 1647 (1971) (in Russian).

T.V. Lokotosh, N.P. Malomuzh. Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids. Physica A 286, 474 (2000).

https://doi.org/10.1016/S0378-4371(00)00107-2

L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137,1 (2008).

https://doi.org/10.1016/j.molliq.2007.05.003

T.V. Lokotosh, N.P. Malomuzh, K.N. Pankratov. Thermal motion in water-electrolyte solutions according to quasielastic incoherent neutron scattering data. J. Chem. Eng. Data 55, 2021 (2010).

https://doi.org/10.1021/je9009706

T.V. Lokotosh, M.P. Malomuzh, K.M. Pankratov, K.S. Shakun. New results in the theory of collective self-diffusion in liquids. Ukr. J. Phys. 60, 697 (2015).

https://doi.org/10.15407/ujpe60.08.0697

L.A. Bulavin, P.G. Ivanitskii, V.G. Krotenko, V.N. Lyaskovskaya. Neutron studies of water self-diffusion in aqueous

electrolyte solutions. Zh. Fiz. Khim. 61, 3270 (1987) (in Russian).

L.A. Bulavin, A.A. Vasilkevich, A.K. Dorosh, V.T. Krotenko, V.I. Slisenko. Self-diffusion of water in aqueous solutions of singly charged electrolytes. Ukr. Fiz. Zh. 31, 1703 (1986) (in Russian).

V.T. Krotenko, A.K. Dorosh, P.G. Ivanitskii, L.A. Bulavin, V.I. Slisenko, A.A. Vasilkevich. Neutron studies of self-diffusion of water molecules in electrolyte solutions. Zh. Strukt. Khim. 33, 72 (1992) (in Russian).

https://doi.org/10.1007/BF00753063

L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov. Self-diffusion features in water. Zh. Strukt. Khim. 47, S54 (2006) (in Russian).

https://doi.org/10.1007/s10947-006-0377-6

L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov. The character of the thermal motion of water molecules according

to the data of quasielastic incoherent scattering of slow neutrons. Zh. Strukt. Khim. 47, 54 (2006) (in Russian).

S.A. Mikhailenko, V.V. Yakuba. Self-diffusion and nuclear magnetic relaxation in liquid mixtures CH4-CF4. Ukr. Fiz. Zh. 26, 784 (1981) (in Russian).

S.A. Mikhailenko, V.V. Yakuba. Self-diffusion and nuclear magnetic relaxation in liquid propylene and its mixtures with krypton. Ukr. Fiz. Zh. 27, 712 (1982) (in Russian).

N.P. Malomuzh, I.Z. Fisher. On the collective nature of thermal motion in liquids. Fiz. Zhidk. Sost. No. 1, 33 (1973) (in Russian).

I.V. Blazhnov, N.P. Malomuzh, S.V. Lishchuk. Temperature dependence of density, thermal expansion coefficient

and shear viscosity of supercooled glycerol as a reflection of its structure. J. Chem. Phys. 121, 6435 (2004).

https://doi.org/10.1063/1.1789474

N.P. Malomuzh, V.N. Makhlaichuk. Theory of self-diffusion in liquid metals. Rasplavy 5, 561 (2018) (in Russian).

N.P. Malomuzh. Nature of self-diffusion in fluids. Ukr. J. Phys. 63, 1076 (2018).

https://doi.org/10.15407/ujpe63.12.1076

R.A. Swalin. On the theory of self-diffusion in liquid metals. Acta Metallurgica 7, 736 (1959).

https://doi.org/10.1016/0001-6160(59)90179-8

D.K. Belashchenko. Computer simulation of liquid metals. Usp. Fiz. Nauk 183, 1281 (2013) (in Russian).

https://doi.org/10.3367/UFNr.0183.201312b.1281

D.K. Belashchenko. Embedded atom model application to liquid metals: Liquid rubidium. Russ. J. Phys. Chem. 80, 1567 (2006).

https://doi.org/10.1134/S0036024406100062

N. Jakse, A. Pasturel. Transport properties and Stokes-Einstein relation in Al-rich liquid alloys. J. Chem. Phys. 144, 244502 (2016).

https://doi.org/10.1063/1.4954322

F. Demmel, A. Tani. Stokes-Einstein relation of the liquid metal rubidium and its relationship to changes in the

microscopic dynamics with increasing temperature. Phys. Rev. E 97, 062124 (2018).

L.A. Bulavin. Neutron Diagnostics of Liquid Matter State (Institute for Safety Problems of Nuclear Power Plants of the NAS of Ukraine, 2012) (in Ukrainian).

N.P. Malomuzh , V.P. Oleynik. Nature of the kinematic shear viscosity of water. J. Struct. Chem. (Russia) 49, 1055 (2008).

https://doi.org/10.1007/s10947-008-0178-1

P.V.Makhlaichuk, V.N.Makhlaichuk, N.P.Malomuzh. Nature of the kinematic shear viscosity of low-molecular

liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577 (2017).

https://doi.org/10.1016/j.molliq.2016.11.101

L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008).

https://doi.org/10.1016/j.cplett.2008.01.028

V.M. Makhlaichuk. Qualitative properties of shear viscosity in liquids. Ukr. J. Phys. 63, 986 (2018).

https://doi.org/10.15407/ujpe63.11.986

V.N. Makhlaichuk. Kinematic shear viscosity of liquid alkaline metals. Ukr. J. Phys. 62, 672, (2017).

https://doi.org/10.15407/ujpe62.08.0672

N.P. Malomuzh, V.N. Makhlaichuk. Peculiarities of self-diffusion and shear viscosity in transition and post-transition metals. Rasplavy 5, 578 (2018) (in Russian).

N.W. Ashcroft, J. Lekner. Structure and resistivity of liquid metals. Phys. Rev. B 45, 83 (1976).

D.K. Belashchenko. Transfer Phenomena in Liquid Metals and Semiconductors (Atomizdat, 1970) (in Russian).

P. Protopapas, H.C.Andersen, N.A.D. Parlee. Theory of transport in liquid metals. I. Calculation of self-diffusion coefficients. J. Chem. Phys. 59, 15 (1973).

https://doi.org/10.1063/1.1679784

J.O. Hirschfelder, Ch.F. Curtiss, R.B. Bird. Molecular Theory of Gases and Liquids (Wiley, 1967).

H.M. Lu, G. Li, Y.F. Zhu, Q. Jiang. Temperature dependence of self-diffusion coefficient, J. Non-Cryst. Solids 352, 2797 (2006).

https://doi.org/10.1016/j.jnoncrysol.2006.03.049

S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25∘C. J. Phys. Chem. B 102, 4193 (1998).

https://doi.org/10.1021/jp980642x

D.K. Belashchenko. Application of the embedded atom model to liquid metals: Liquid sodium. High Temp. 47, 494 (2009).

https://doi.org/10.1134/S0018151X09040063

D.K. Belashchenko. Computer simulation of liquid zinc. High Temp. 50, 61 (2012).

https://doi.org/10.1134/S0018151X11060058

J. Frenkel. Kinetic Theory of Liquids (Dover, 1955).

A.R. Dexter, A.J. Matheson. Elastic moduli and stress relaxation times in liquid argon. J. Chem. Phys. 54, 203 (1971).

https://doi.org/10.1063/1.1674594

CRS Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. Edited by R.C. West (CRC Press, 1996).

Physical Acoustics. Vol. 1. Principles and Methods. Edited by W.P. Mason (Academic Press, 1964).

C. Klieber, D. Torchinsky, T. Pezeril, K. Manke, S. Andrieu, K.A. Nelson. High frequency longitudinal and shear acoustic waves in glass-forming liquids. J. Phys.: Conf. Ser. 214, 012033 (2010).

https://doi.org/10.1088/1742-6596/214/1/012033

R. Hartkamp, P.J. Daivis, B.D. Todd. Density dependence of the stress relaxation function of a simple fluid. Phys. Rev. E 87, 032155 (2013).

https://doi.org/10.1103/PhysRevE.87.032155

P.S. van der Gulik. The linear pressure dependence of the viscosity at high densities. Physica A 256, 39 (1998).

https://doi.org/10.1016/S0378-4371(98)00197-6

D.K. Belashchenko, N.Yu. Nikitin. The embedded atom model of liquid cesium. Russ. J. Phys. Chem. A 82, 1283 (2008).

https://doi.org/10.1134/S0036024408080086

W. Schommers. Pair potentials in disordered many-particle systems: A study for liquid gallium. Phys. Rev. A 28, 3599 (1983).

https://doi.org/10.1103/PhysRevA.28.3599

Опубліковано

2021-04-07

Як цитувати

Makhlaichuk, V. (2021). Прояви існування колективного переносу в атомарних рідинах та рідких металах. Український фізичний журнал, 66(3), 247. https://doi.org/10.15407/ujpe66.3.247

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика