Конкуренція лінійного та нелінійного механізмів локалізації в спін-торк осциляторах за наявності потенціальної ями
DOI:
https://doi.org/10.15407/ujpe64.10.947Ключові слова:
-Анотація
Аналiтично та числовими методами дослiджується динамiка намагнiченостi у спiн-торк осциляторах з неоднорiдним профiлем статичного магнiтного поля, який утворює потенцiальну яму. Продемонстровано, що у випадку достатньо глибокої та вузької потенцiальної ями лiнiйний механiзм
локалiзацiї домiнує над нелiнiйною самолокалiзацiєю, незважаючи на вiд’ємний нелiнiйний зсув частоти спiнових хвиль. Змiна механiзму локалiзацiї вiдображається у якiсно рiзних залежностях потужностi генерацiї вiд струму накачки – у випадку лiнiйної локалiзацiї реалiзується м’який режим збудження автогенератора, тодi як у випадку нелiнiйної самолокалiзацiї спостерiгається жорсткий режим збудження. При цьому рiзниця профiлiв збуджених спiн-хвильових мод стає помiтною та такою, що може бути експериментально вимiряною, лише у випадку несиметричного положення потенцiальної ями.
Посилання
J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars, Phys. Rev. Lett. 84, 3149 (2000). https://doi.org/10.1103/PhysRevLett.84.3149
R. Ramaswamy, J.M. Lee, K. Cai, H. Yang. Recent advances in spin-orbit torques: Moving towards device applications. Appl. Phys. Rev. 5, 031107 (2018). https://doi.org/10.1063/1.5041793
K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, E. Saitoh. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008). https://doi.org/10.1103/PhysRevLett.101.036601
A. Hamadeh, O. d'Allivy Kelly, C. Hahn, H. Meley, R. Bernard, A.H. Molpeceres, V.V. Naletov, M. Viret, A. Anane, V. Cros, S.O. Demokritov, J.L. Prieto, M. Mu?noz, G. de Loubens, O. Klein. Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque. Phys. Rev. Lett. 113, 197203 (2014). https://doi.org/10.1103/PhysRevLett.113.197203
S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003). https://doi.org/10.1038/nature01967
W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004). https://doi.org/10.1103/PhysRevLett.92.027201
O. Prokopenko, E. Bankowski, T. Meitzler, V. Tiberkevich, A. Slavin. Spin-torque nano-oscillator as a microwave signal source. IEEE Magn. Lett. 2, 3000104 (2011). https://doi.org/10.1109/LMAG.2010.2102007
S. Tsunegi, H. Kubota, K. Yakushiji, M. Konoto, S. Tamaru, A. Fukushima, H. Arai, H. Imamura, E. Grimaldi, R. Lebrun, J. Grollier, V. Cros, S. Yuasa. High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Appl. Phys. Express 7, 063009 (2014). https://doi.org/10.7567/APEX.7.063009
V.E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, S.O. Demokritov. Excitation of coherent propagating spin waves by pure spin currents. Nature Commun 7, 10446 (2016). https://doi.org/10.1038/ncomms10446
A. Giordano, R. Verba, R. Zivieri, A. Laudani, V. Puliafito, G. Gubbiotti, R. Tomasello, G. Siracusano, B. Azzerboni, M. Carpentieri, A. Slavin, G. Finocchio. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves. Sci. Rep. 6, 36020 (2016). https://doi.org/10.1038/srep36020
J. Torrejon, M. Riou, F.A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M.D. Stiles, J. Grollier. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017). https://doi.org/10.1038/nature23011
V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, S.O. Demokritov. Magnetic nano-oscillator driven by pure spin current,. Nat. Mater. 11, 1028 (2012). https://doi.org/10.1038/nmat3459
V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov, A.N. Slavin, S.O. Demokritov. Spin-current nano-oscillator based on nonlocal spin injection. Sci. Rep. 5, 8578 (2015). https://doi.org/10.1038/srep08578
A. Slavin, V. Tiberkevich. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875 (2009). https://doi.org/10.1109/TMAG.2008.2009935
V.S. Pribiag, I.N. Krivorotov, G.D. Fuchs, P.M. Braganca, O. Ozatay, J.C. Sankey, D.C. Ralph, R.A. Buhrman. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nature Phys. 3, 498 (2007). https://doi.org/10.1038/nphys619
V.E. Demidov, S. Urazhdin, E.R.J. Edwards, M.D. Stiles, R.D. McMichael, S.O. Demokritov. Control of magnetic fluctuations by spin current. Phys. Rev. Lett. 107, 107204 (2011). https://doi.org/10.1103/PhysRevLett.107.107204
J. Slonczewski. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261 (1999). https://doi.org/10.1016/S0304-8853(99)00043-8
M.A. Hoefer, M.J. Ablowitz, B. Ilan, M.R. Pufall, T.J. Silva. Theory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films. Phys. Rev. Lett. 95, 267206 (2005). https://doi.org/10.1103/PhysRevLett.95.267206
G. Consolo, L. Lopez-Diaz, B. Azzerboni, I. Krivorotov, V. Tiberkevich, A. Slavin. Excitation of spin waves by a current-driven magnetic nanocontact in a perpendicularly magnetized waveguide. Phys. Rev. B 88, 014417 (2013). https://doi.org/10.1103/PhysRevB.88.014417
A. Slavin, V. Tiberkevich. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005). https://doi.org/10.1103/PhysRevLett.95.237201
G. Consolo, B. Azzerboni, G. Gerhart, G.A. Melkov, V. Tiberkevich, A.N. Slavin. Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts: A micromagnetic study. Phys. Rev. B 76, 144410 (2007). https://doi.org/10.1103/PhysRevB.76.144410
S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio, P. Muduli, F. Mancoff, A. Slavin, J. ? Akerman. Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010). https://doi.org/10.1103/PhysRevLett.105.217204
L. Yang, R. Verba, V. Tiberkevich, T. Schneider, A. Smith, Z. Duan, B. Youngblood, K. Lenz, J. Lindner, A.N. Slavin, I.N. Krivorotov. Reduction of phase noise in nanowire spin orbit torque oscillators. Sci. Rep. 5, 16942 (2015). https://doi.org/10.1038/srep16942
K. Wagner, A. Smith, T. Hache, J.-R. Chen, L. Yang, E. Montoya, K. Schultheiss, J. Lindner, J. Fassbender, I. Krivorotov, H. Schultheiss. Injection locking of multiple auto-oscillation modes in a tapered nanowire spin Hall oscillator. Sci. Rep. 8, 16040 (2018). https://doi.org/10.1038/s41598-018-34271-4
Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner, V.E. Demidov, S.O. Demokritov, I.N. Krivorotov. Nanowire spin torque oscillator driven by spin-orbit torques. Nature Commun. 5, 5616 (2014). https://doi.org/10.1038/ncomms6616
M. Dvornik, A.A. Awad, J. ? Akerman. Origin of magnetization auto-oscillations in constriction-based spin Hall nano-oscillators. Phys. Rev. Applied 9, 014017 (2018). https://doi.org/10.1103/PhysRevApplied.9.014017
H. Mazraati, S.R. Etesami, S.A.H. Banuazizi, S. Chung, A. Houshang, A.A. Awad, M. Dvornik, J. ? Akerman. Auto-oscillating spin-wave modes of constriction-based spin Hall nano-oscillators in weak in-plane fields. Phys. Rev. Applied 10, 054017 (2018). https://doi.org/10.1103/PhysRevApplied.10.054017
M. Dvornik, J. ? Akerman. Anomalous nonlinearity of the magnonic edge mode. arXiv:1804.01585 [cond-mat.mes-hall].
B. Divinskiy, V.E. Demidov, S. Urazhdin, R. Freeman, A.B. Rinkevich, S.O. Demokritov. Controllable excitation of quasi-linear and bullet modes in a spin-Hall nano-oscillator. Appl. Phys. Lett. 114, 042403 (2019). https://doi.org/10.1063/1.5064841
A. Houshang, R. Khymyn, H. Fulara, A. Gangwar, M. Haidar, S.R. Etesami, R. Ferreira, P.P. Freitas, M. Dvornik, R.K. Dumas, J. ? Akerman. Spin transfer torque driven higher-order propagating spin waves in nanocontact magnetic tunnel junctions. Nature Commun. 9, 4374 (2018). https://doi.org/10.1038/s41467-018-06589-0
H. Ulrichs, V.E. Demidov, S.O. Demokritov. Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators. Appl. Phys. Lett. 104, 042407 (2014). https://doi.org/10.1063/1.4863660
G. Consolo, G. Finocchio, G. Siracusano, S. Bonetti, A. Eklund, J. ? Akerman, B. Azzerboni. Non-stationary excitation of two localized spin-wave modes in a nanocontact spin torque oscillator. J. Appl. Phys. 114, 153906 (2013). https://doi.org/10.1063/1.4825065
S. Bonetti, R. Kukreja, Z. Chen, F. Maci'a, J.M. Hern'andez, A. Eklund, D. Backes, J. Frisch, J. Katine, G. Malm, S. Urazhdin, A. D. Kent, J. St?ohr, H. Ohldag, H.A. D?urr. Direct observation and imaging of a spin-wave soliton with p-like symmetry. Nature Commun. 6, 8889 (2015). https://doi.org/10.1038/ncomms9889
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.