Можливість блокування процесу розкриття пар основ макромолекули ДНК молекулами пероксиду водню

Автор(и)

  • O. O. Zdorevskyi Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • S. N. Volkov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.6.500

Ключові слова:

DNA base pairs, hydrogen peroxide, ion therapy

Анотація

Променева терапiя важкими iонами є одним з найбiльш прогресивних методiв лiкування ракових захворювань. Результати моделювання процесу радiолiзу води показали, що в середовищi живої клiтини найбiльший час життя мають молекули пероксиду водню (H2O2). Проте, на сьогоднiшнiй день не встановлено, яку участь беруть молекули H2O2 у деактивацiї ракових клiтин. Для того, щоб встановити роль молекул пероксиду водню в iоннiй терапiї, в данiй роботi дослiджено конкурентну взаємодiю молекул H2O та H2O2 з парами нуклеїнових основ на рiзних стадiях процесу передачi генетичної iнформацiї. Для розрахункiв використано метод атом-атомних потенцiальних функцiй. Показано, що iснують конфiгурацiї пар A·T та G·C, якi стабiлiзованi молекулою H2O2 суттєво краще, нiж молекулою води. Утворення таких комплексiв може зупинити процес розкриття пар основ макромолекули ДНК ферментом, i, вiдповiдно, заблокувати процес передачi генетичної iнформацiї в ракових клiтинах пiд час iонної терапiї. Запропоновано метод експериментального пiдтвердження взаємодiї молекул пероксиду водню з нуклеїновими основами ДНК.

Посилання

W.H. Bragg, R. Kleeman. LXXIV. On the ionization curves of radium. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48, 726 (1904). https://doi.org/10.1080/14786440409463246

E. Surdutovich, A.V. Yakubovich, A.V. Solov'yov. Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes. Europ. Phys. J. D 60, 101 (2010). https://doi.org/10.1140/epjd/e2010-00232-3

M. Kr?amer, M. Durante. Ion beam transport calculations and treatment plans in particle therapy. Eur. Phys. J. D 60, 195 (2010). https://doi.org/10.1140/epjd/e2010-00077-8

P.L. Olive. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiation Research 150, 11 (1998). https://doi.org/10.2307/3579807

C.M. Gustafsson. Mechanistic Studies of DNA Repair (Royal Swedish Academy of Sciences, 2015).

M.S. Kreipl, W. Friedland, H.G. Paretzke. Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation. Radiation and Environmental Biophysics 48, 11 (2008). https://doi.org/10.1007/s00411-008-0194-8

S. Uehara, H. Nikjoo. Monte Carlo simulation of water radiolysis for low-energy charged particles. Journal of Radiation Research 47, 69 (2006). https://doi.org/10.1269/jrr.47.69

D. Boscolo, M. Kr?amer, M. Durante, M.C. Fuss, E. Scifoni. Trax-chem: A pre-chemical and chemical stage extension of the particle track structure code trax in water targets. Chemical Physics Letters 698, 11 (2018). https://doi.org/10.1016/j.cplett.2018.02.051

D.V. Piatnytskyi, O.O. Zdorevskyi, S.M. Perepelytsya, S.N. Volkov. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action. Europ. Phys. J. D 69, 255 (2015). https://doi.org/10.1140/epjd/e2015-60210-9

D.V. Piatnytskyi, S.N. Volkov. Complexes of hydrogen peroxide and DNA phosphate group in quantum-chemical calculations. Biophys. Bulletin 39, 5 (2018). https://doi.org/10.26565/2075-3810-2018-39-01

O. Zdorevskyi, D. Piatnytskyi, S.N. Volkov. Blocking of DNA specific recognition sites by hydrogen peroxide molecules in the process of ion beam therapy of cancer cells. arXiv preprint , arXiv:1811.11026 (2018). https://doi.org/10.15407/dopovidi2019.06.082

C. Bustamante, Z. Bryant, S.B. Smith. Ten years of tension: single-molecule DNA mechanics. Nature 6921, 423 (2003). https://doi.org/10.1038/nature01405

U. Bockelmann, Ph. Thomen, B. Essevaz-Roulet, V. Viasnoff, F. Heslot. Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J. 82, 1537 (2002). https://doi.org/10.1016/S0006-3495(02)75506-9

J.M. Huguet, C.V. Bizarro, N. Forns, S.B. Smith, C. Bustamante, F. Ritort. Single-molecule derivation of salt dependent base-pair free energies in DNA. Proc. of the Nat. Acad. of Sci. 107, 15431 (2010). https://doi.org/10.1073/pnas.1001454107

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell. Charmm general force field: A force field for drug-like molecules compatible with the charmm all-atom additive biological force fields. J. Computat. Chem. 31, 671 (2010). https://doi.org/10.1002/jcc.21367

T.E. Cheatham, D.A. Case. Twenty-five years of nucleic acid simulations. Biopolymers 99, 969 (2013). https://doi.org/10.1002/bip.22331

R Lavery. Modeling nucleic acids: fine structure, flexibility and conformational transitions. Adv. Comput. Biol. 1, 69 (1994).

J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave Version 4.2.1 Manual: a High-Level Interactive Language for Numerical Computations (2017).

V.I. Poltev, N.V. Shulyupina. Simulation of interactions between nucleic acid bases by refined atom-atom potential functions. J. of Biomol. Struct. and Dynamics 4, 739 (1986). https://doi.org/10.1080/07391102.1986.10508459

V.B. Zhurkin, V.I. Poltev, V.L. Florent'ev. Atom-atomic potential functions for conformational calculations of nucleic acids. Molekul. Biolog. 14, 1116 (1980).

S.A. Clough, Y. Beers, G.P. Klein, L.S. Rothman. Dipole moment of water from Stark measurements of H2O, HDO, and D2O. J. Chem. Phys. 59, 2254 (1973). https://doi.org/10.1063/1.1680328

J.T. Massey, D.R. Bianco. The microwave spectrum of hydrogen peroxide. J. Chem. Phys. 22, 442 (1954). https://doi.org/10.1063/1.1740088

S.T. Moin, T.S. Hofer, B.R. Randolf, B.M. Rode. An ab initio quantum mechanical charge field molecular dynamics simulation of hydrogen peroxide in water. Computat. Theor. Chem. 980, 15 (2012). https://doi.org/10.1016/j.comptc.2011.11.006

E.A. Orabi, A.M. English. A simple additive potential model for simulating hydrogen peroxide in chemical and biological systems. J. Chem. Theory Computat. 14, 2808 (2018). https://doi.org/10.1021/acs.jctc.8b00246

B.E. Hingerty, R.H. Ritchie, T.L. Ferrell, J.E. Turner. Dielectric effects in biopolymers: The theory of ionic saturation revisited. Biopolymers 24, 427 (1985). https://doi.org/10.1002/bip.360240302

S. Diekmann. Definitions and nomenclature of nucleic acid structure parameters. J. Mol. Biology 205, 787 (1989). https://doi.org/10.1016/0022-2836(89)90324-0

X.-J. Lu, W.K. Olson. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucl. Acids Research 31, 5108 (2003). https://doi.org/10.1093/nar/gkg680

W. Humphrey, A. Dalke, K. Schulten. VND: visual molecular dynamics.J. Mol. Graphics 14, 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

O. Zdorevskyi, S.N. Volkov. Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments. Europ. Biophys. J. 47, 917 (2018). https://doi.org/10.1007/s00249-018-1313-3

E.S. Kryachko, S.N. Volkov. Preopening of the DNA base pairs. Intern. J. Quant. Chem. 82, 193 (2001). https://doi.org/10.1002/qua.1040

E. Giudice, P. V?arnai, R. Lavery. Base pair opening within b-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Phys. Phys. D 31, 1434 (2003). https://doi.org/10.1093/nar/gkg239

V.I. Poltev, E.H. Gonzalez, A.V. Teplukhin. Possible role of rare tautomers of nucleic bases in mutagenesis: Effect of hydration on tautomer equilibrium. Molecular Biology 29, 213 (1995).

L. Gorb, Y. Podolyan, P. Dziekonski, W.A. Sokalski, J. Leszczynski. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study. J. Amer. Chem. Soc. 126, 10119 (2004). https://doi.org/10.1021/ja049155n

J.A. Dobado, J. Molina. Adenine-hydrogen peroxide system: DFT and MP2 investigation. J. Phys. Chem. A 103, 4755 (1999). https://doi.org/10.1021/jp990671n

S.N. Volkov, E.V. Paramonova, A.V. Yakubovich, A.V. Solov'yov. Micromechanics of base pair unzipping in the DNA duplex. J. Phys.: Condensed Matter 24, 035104 (2011). https://doi.org/10.1088/0953-8984/24/3/035104

B. Prescott, W. Steinmetz, G.J. Thomas, jr. Characterization of DNA structures by laser Raman spectroscopy. Biopolymers: Original Research on Biomolecules 23, 235 (1984). https://doi.org/10.1002/bip.360230206

V.Y. Maleev, M.A. Semenov, A.I. Gasan, V.A. Kashpur. Physical properties of the DNA-water system. Biofizika 38, 768 (1993).

R. Galletto, M.J. Jezewska, W. Bujalowski. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DNAb helicase using rapid quench-flow method. J. Mol. Biol. 343, 83 (2004). https://doi.org/10.1016/j.jmb.2004.07.055

Downloads

Опубліковано

2019-08-02

Як цитувати

Zdorevskyi, O. O., & Volkov, S. N. (2019). Можливість блокування процесу розкриття пар основ макромолекули ДНК молекулами пероксиду водню. Український фізичний журнал, 64(6), 500. https://doi.org/10.15407/ujpe64.6.500

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика