Синтез і характеристика структури і електричних властивостей Mg(0,25x)Cu(0,25x)Zn(1 – 5x)Fe2O4 феритів золь-гель методом

Автор(и)

  • M. Shahjahan Department of Physics, University of Chittagong, ENS Paris Saclay, Complutense University of Madrid
  • S. M. Talukder Department of Physics, University of Chittagong
  • M. S. Hossain Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific & Industrial Research (BCSIR)
  • M. H. A. Begum Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific & Industrial Research (BCSIR)
  • R. L. Warnock ENS Paris Saclay, Complutense University of Madrid
  • M. A. Haque Department of Physics, University of Chittagong
  • M. Hossain Daffodil International University
  • N. A. Ahmed Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific & Industrial Research (BCSIR)

DOI:

https://doi.org/10.15407/ujpe64.9.861

Ключові слова:

MgCuZn ferrite, sol-gel method, nanocrystalline ferrites, magnetic properties, multilayer chip inductors

Анотація

Iз використанням золь-гель методу вивченi ефекти вiд добавок магнiю, мiдi i цинку на феритах шпiнелi. Ферити складу Mg0,25xCu0,25xZn(1−0,5x)Fe2O4 (де x = 0,6, 0,7, 0,8 та 0,9) виготовленi при температурi спiкання 1100 ∘C з попереднiм нагрiванням при 500 ∘C. Використано рентгеноструктурний аналiз, растрову електронну мiкроскопiю (РЕМ) i високоточний iмпедансний аналiз для визначення структури, дiелектричних властивостей, топографiї поверхнi i морфологiї зразкiв. РЕМ-зображення показують однорiдну мiкроструктуру з однорiдним розподiлом розмiрiв. Дiелектрична константа i тангенс дiелектричних втрат зменшуються з ростом зовнiшньої частоти до певної точки насичення. Опiр за постiйним током зростає з температурою до точки Кюрi, де виходить на постiйне значення. Q-фактор зростає з частотою, що робить ферити дуже корисними на практицi, зокрема, в багатошарових котушках iндуктивностi чiпiв.

Посилання

Z. Yue, J. Zhou, L. Li, X.Wang, Z. Gui. Effect of copper on the electromagnetic properties of Mg-Zn-Cu ferrites prepared by sol-gel auto-combustion method. Mat. Sci. Eng. B 86, 64 (2001). https://doi.org/10.1016/S0921-5107(01)00660-2

X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li. Effect of Mn substitution on the magnetic properties of MgCuZn ferrites. J. Mag. Mag. Mat. 251, 316 (2002). https://doi.org/10.1016/S0304-8853(02)00854-5

Z.В. Yue, J.В. Zhou, X.В. Wang, Z.В. Gui, L.В. Li. Low-temperature sintered Mg-Zn-Cu ferrite prepared by auto-combustion of nitrate-citrate gel. J. Mat. Sci. Lett. 20, 1327 (2001).

D.S. Mathew, R.S. Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51 (2007). https://doi.org/10.1016/j.cej.2006.11.001

E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov. Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mat. 16, 5689 (2004). https://doi.org/10.1021/cm049189u

P.J. Hak, K.J. Ho, C.S. Hee. Proceedings of the Seventh International Conference on Ferrites (Bordeaux, France, 1996).

A. Daigle, J. Modest, A.L. Geiler, S. Gillette, Y. Chen, M. Geiler, B. Hu, S. Kim, K. Stopher, C. Vittoria, V.G. Harris. Structure, morphology and magnetic properties of Mg(x)Zn(1−x)Fe2O4 ferrites prepared by polyol and aqueous co-precipitation methods: A low-toxicity alternative to Ni(x)Zn(1−x)Fe2O4 ferrites. Nanotechnology 22, 305708 (2011). https://doi.org/10.1088/0957-4484/22/30/305708

M.P.l Reddy, W. Madhuri, N.R. Reddy, K.V. Siva Kumar, V.R.K. Murthy, R.R. Reddy. Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method. Mat. Sci. Eng. 30, 1094 (2010). https://doi.org/10.1016/j.msec.2010.06.002

R. Hobne, K. Melzer, H. Hochschild, G. Libor, R. Krause. Magnetic after-effects in titanium-doped magnetite. Phys. Staus Solidi A 27, 117 (1975). https://doi.org/10.1002/pssa.2210270261

A.H. Wafik, S.A. Mazen, S.F. Mansour. Composition dependence of discontinuous magnetization in Li-Ti ferrites. J. Phys. D: Appl. Phys. 26, 2010 (1993). https://doi.org/10.1088/0022-3727/26/11/026

Z. Yue, J. Zhou, L. Li, X.Wang, Z. Gui. Effect of copper on the electromagnetic properties of Mg-Zn-Cu ferrites prepared by sol-gel auto-combustion method. Mat. Sci. Eng. B 86, 64 (2001). https://doi.org/10.1016/S0921-5107(01)00660-2

M.R. Barati. Influence of zinc substitution on magnetic and electrical properties of MgCuZn ferrite nanocrystalline powders prepared by sol-gel auto-combustion method. J. Alloys and Compounds 478, 375 (2009). https://doi.org/10.1016/j.jallcom.2008.11.022

M.M. Haquea, M. Huqa, M.A. Hakim. Densification, magnetic and dielectric behaviour of Cu-substituted Mg-Zn ferrites. Mat. Chem. Phys. 112, 580 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.097

Z. Yue, J. Zhou, L. Li, X.Wang, Z. Gui. Effect of copper on the electromagnetic properties of Mg-Zn-Cu ferrites prepared by sol-gel auto-combustion method. Mat. Sci. Eng. B 86, 64 (2001). https://doi.org/10.1016/S0921-5107(01)00660-2

M.M. Haquea, M. Huqa, M.A. Hakim. Densification, magnetic and dielectric behaviour of Cu-substituted Mg-Zn ferrites. Mat. Chem. Phys. 112, 580 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.097

J. Murbe, J. Topfer. Mg-Cu-Zn ferrites for multilayer inductors. Int. J. App. Ceramic Technol. 4, 415 (2007). https://doi.org/10.1111/j.1744-7402.2007.02163.x

L.J. Berchmans, R. Kalai Selvana, P.N. Selva Kumar, C.O. Augustin. Structural and electrical properties of Ni1−xMgxFe2O4 synthesized by citrate gel process. J. Mag. Mag. Mat. 279, 103 (2004). https://doi.org/10.1016/j.jmmm.2004.01.073

M. Naeem, N.A. Shah, I.H. Gul, A. Maqsood. Structural, electrical and magnetic characterization of Ni-Mg spinel ferrites. J. Alloys and Compounds 487, 739 (2009). https://doi.org/10.1016/j.jallcom.2009.08.057

V.K. Mittal, P. Chandramohan, S. Era, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan. Cation distribution in NixMg1−xFe2O4 studied by XPS and M' 'ossbauer spectroscopy. Sol. Stat. Commun. 137, 6 (2006). https://doi.org/10.1016/j.ssc.2005.10.019

N. Singh, A. Agarwal, S. Sanghi, P. Singh. Effect of magnesium substitution on dielectric and magnetic properties of Ni-Zn ferrite. Phys. B: Cond. Matter 406, 687 (2011). https://doi.org/10.1016/j.physb.2010.11.087

N. Varalaxmi, N.R. Reddy, M.V. Ramana, E. Rajagopal, V.R. Murthy, K.V. Sivakumar. Stress sensitivity of inductance in NiMgCuZn ferrites and development of a stress insensitive ferrite composition for microinductors. Mat. in Electron. 19, 399 (2008). https://doi.org/10.1007/s10854-007-9352-z

P.K. Roy, J. Bera. Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55)Fe2O4 ferrite prepared by auto combustion method. J. Mag. Mag. Mater. 298, 38 (2006). https://doi.org/10.1016/j.jmmm.2005.03.007

M. Shinkai. Functional magnetic particles for medical application. J. Biosci. Bioeng. 94, 606 (2002). https://doi.org/10.1263/jbb.94.606

A.S. Lubbe, C. Alexiou, C. Bergemann. Clinical applications of magnetic drug targeting. J. Surgical Res. 95, 200 (2001). https://doi.org/10.1006/jsre.2000.6030

L.X. Tiefenauer, A. Tschirky, G. Kuhne, R.Y. Andres. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Mag. Res. Imaging 14, 391(1996). https://doi.org/10.1016/0730-725X(95)02106-4

R. Skmoski. Nanomagnetics. J. Phys.: Cond. Matter 15, 841 (2003). https://doi.org/10.1088/0953-8984/15/20/202

M.R.J. Gibbs. Nanomagnetism-nascent or fully formed. Cur. Opi. Sol. Stat. Mat. Science 7, 83 (2003). https://doi.org/10.1016/S1359-0286(03)00053-6

M.R. Barati. Characterization and preparation of nanocrystalline MgCuZn ferrite powders synthesized by sol-gel auto-combustion method. J. of Sol-Gel Sci. & Technol. 52, 171 (2009). https://doi.org/10.1007/s10971-009-2023-1

C.H. Sujatha, K.V.l Reddy, K.S. Babu, A.R.C. Reddy, K.H. Rao. Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano ferrite. Ceramics Intern. 38, 5813 (2012). https://doi.org/10.1016/j.ceramint.2012.04.029

M.M. Bahout, S. Bertrand, O. Pena. Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor. J. Sol. Stat. Chem. 178, 1080 (2005). https://doi.org/10.1016/j.jssc.2005.01.009

A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan. Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method. J. Mag. Mag. Mater. 208, 13 (2000). https://doi.org/10.1016/S0304-8853(99)00585-5

Q. Chen, A.J. Rondinone, B.C. Chakoumakos, Z. Zhang. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J. Mag. Mag. Materials 194, 1 (1999). https://doi.org/10.1016/S0304-8853(98)00585-X

D.H. Chen, X.R. He. Synthesis of nickel ferrite nanoparticles by sol-gel method. Mat. Research Bulletin 36, 1369 (2001). https://doi.org/10.1016/S0025-5408(01)00620-1

C.C. Hwang, J.S. Tsai, T.H. Huang. Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates-investigations of precursor homogeneity, product reproducibility, and reaction mechanism. J. Mater. Chem. Phys. 93, 330 (2005). https://doi.org/10.1016/j.matchemphys.2005.03.056

C.H. Peng., C.K. Hwang, S.Y. Chen. A self-propagating high-temperature synthesis method for Ni-ferrite powder synthesis. J. Mater. Sci. Eng. B 107, 295 (2004). https://doi.org/10.1016/j.mseb.2003.12.004

X. Jiao, D. Chen, Y. Hu. Hydrothermal synthesis of nanocrystalline MxZn1−xFe2O4 (M = Ni, Mn, Co; x = 0.40-0.60) powders. Mat. Research Bulletin 37, 1583 (2002). https://doi.org/10.1016/S0025-5408(02)00857-7

S.S. Kamble, S.J. Vrushali, P.C. Pingale. Synthesis of Mg0.48Cu0.12Zn0.40Fe2O4 ferrite and its aptness for multilayer chip component application. Ceramics Intern. 39, 3597 (2013). https://doi.org/10.1016/j.ceramint.2012.10.187

D. Ravinder, K.V. Kumer. Dielectric behaviour of erbium substituted Mn-Zn ferrites. Bul. Mat. Sci. 24, 505 (2001). https://doi.org/10.1007/BF02706722

M. Sorescua, L. Diamandescua, R. Peelamedu, R. Roy, P. Yadoji. Structural and magnetic properties of NiZn ferrites prepared by microwave sintering. J. Mag. Mag. Mater. 279, 195 (2004). https://doi.org/10.1016/j.jmmm.2004.01.079

B. Roebuck, C. Phatak, I. Birks-Agnew I. A comparison of the linear intercept and equivalent circle methods for grain size measurement in WC/Co hardmetals. NPL Report MATC(A) 149, (2004).

M.F. Huq, D.K. Saha, R. Ahmed, Z.H. Mahmood. Ni-Cu-Zn ferrite research: A brief review. J. Sci. Res. 5, 215 (2013). https://doi.org/10.3329/jsr.v5i2.12434

C. Rath, S. Anand, R.P. Das. Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite. J. Appl. Phys. В 91, 2211 (2002). https://doi.org/10.1063/1.1432474

Y. Singh. Electrical resistivity measurements: A review. Int. J. Mod. Phys.: Conf. Series 22,745 (2013). https://doi.org/10.1142/S2010194513010970

Downloads

Опубліковано

2019-10-11

Як цитувати

Shahjahan, M., Talukder, S. M., Hossain, M. S., Begum, M. H. A., Warnock, R. L., Haque, M. A., Hossain, M., & Ahmed, N. A. (2019). Синтез і характеристика структури і електричних властивостей Mg(0,25x)Cu(0,25x)Zn(1 – 5x)Fe2O4 феритів золь-гель методом. Український фізичний журнал, 64(9), 861. https://doi.org/10.15407/ujpe64.9.861

Номер

Розділ

Структура речовини