Імплантація іонів дейтерію та гелію у композиційну структуру з вольфрамовим покриттям
DOI:
https://doi.org/10.15407/ujpe65.1.61Ключові слова:
радiацiйнi дефекти, дейтерiй, гелiй, iонна iмплантацiя, термодесорбцiя, вольфрамовi покриття, композицiйнi матерiалиАнотація
Дослiджено захоплення, утримання та термодесорбцiю iонно-iмплантованих дейтерiю та гелiю, утворення радiацiйних пошкоджень кристалiчної ґратки вольфрамових покриттiв багатошарових функцiональних структур, опромiнених iонами D+ та He+ середнiх енергiй. Дослiдження проведено за допомогою методiв термодесорбцiйної спектрометрiї та електронної мiкроскопiї. Поведiнку дейтерiю та гелiю у матерiалах вивчали в залежностi вiд температури постiмплантацiйного нагрiву, дози опромiнення iонами He+ та D+ i умов опромiнення iонами: iндивiдуальне або послiдовне. Запропоновано типи утворюваних радiацiйних дефектiв та механiзми їх вiдпалу.
Посилання
R.A. Causey. Hydrogen isotope retention and recycling in fusion reactor plasma-facing components. J. Nucl. Mater. 300, 91 (2002). https://doi.org/10.1016/S0022-3115(01)00732-2
C.H. Skinner, A.A. Haasz, V.Kh. Alimov, N. Bekris, R.A. Causey, R.E.H. Clark, J.P. Coad, J.W. Davis, R.P. Doerner, M. Mayer, A. Pisarev. Recent advances on hydrogen retention in ITER's plasma-facing materials: beryllium, carbon, and tungsten. Fusion Sci. Technol. 54, 891 (2008). https://doi.org/10.13182/FST54-891
F. Liu, Y. Zhang, W. Han, Zh. Shen, J. Yu, G. Lu, K. Zhu. Investigation of hydrogen behavior in tungsten exposed to high energy hydrogen plasma. Nucl. Instrum. Meth. B 307, 320 (2013). https://doi.org/10.1016/j.nimb.2012.11.069
W. Hu, F. Luo, Z. Shen, L. Guo, Zh. Zheng, Y. Wen, Y. Ren. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions. Fusion Eng. Des. 90, 23 (2015). https://doi.org/10.1016/j.fusengdes.2014.10.007
Y. Furuta, I. Takagi, Sh. Kawamura, K. Yamamichi, M. Akiyoshi, T. Sasaki, T. Kobayashi. In situ deuterium observation in deuterium-implanted tungsten. Nucl. Instrum. Meth. B 315, 121 (2013). https://doi.org/10.1016/j.nimb.2013.03.039
T. Ahlgren, K. Heinola, K. Vortler, J. Keinonen. Simulation of irradiation induced deuterium trapping in tungsten. J. Nucl. Mater. 427, 152 (2012). https://doi.org/10.1016/j.jnucmat.2012.04.031
A. Debelle, P.-E. Lhuillier, M.-F. Barthe, T. Sauvage, P. Desgardin. Helium desorption in 3He implanted tungsten at low fluence and low energy. Nucl. Instrum. Meth. B 268, 223 (2010). https://doi.org/10.1016/j.nimb.2009.10.176
I.I. Arkhipov, S.L. Kanashenko, V.M. Sharapov, R.Kh. Zalavutdinov, A.E. Gorodetsky. Deuterium trapping in ion-damaged tungsten single crystal. J. Nucl. Mater. 363-365, 1168 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.150
H. Iwakiri, K. Yasunaga, K. Morishita, N. Yoshida. Microstructure evolution in tungsten during low-energy helium ion irradiation. J. Nucl. Mater. 283-287, 1134 (2000). https://doi.org/10.1016/S0022-3115(00)00289-0
Y. Watanabe, H. Iwakiri, N. Yoshida, K. Morishita, A. Kohyama. Formation of interstitial loops in tungsten under helium ion irradiation: Rate theory modeling and experiment. Nucl. Instrum. Meth. B 255, 32 (2007). https://doi.org/10.1016/j.nimb.2006.11.008
P.E. Lhuillier, A. Debelle, T. Belhabib, A.L. Thomann, P. Desgardin, T. Sauvage, M. F. Barthe, P. Brault, Y. Tessier. Helium desorption in 3He implanted tungsten at low energy. J. Nucl. Mater. 417, 504 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.174
O. El-Atwani, K. Hattar, J.A. Hinks, G. Greaves, S.S. Harilal, A. Hassanein. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions. J. Nucl. Mater. 458, 216 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.095
S. Nagata, K. Takahiro. Effect of helium irradiation on trapping and thermal release of deuterium implanted in tungsten. J. Nucl. Mater. 290-293, 135 (2001). https://doi.org/10.1016/S0022-3115(00)00430-X
H. Iwakiri, K. Morishita, N. Yoshida. Effects of helium bombardment on the deuterium behavior in tungsten. J. Nucl. Mater. 307-311, 135 (2002). https://doi.org/10.1016/S0022-3115(02)01178-9
S. Nagata, S. Yamamoto, K. Tokunaga, B. Tuschiya, K. Toh, T. Shikama. Hydrogen up-take in noble gas implanted W. Nucl. Instrum. Meth. B 242, 535 (2006). https://doi.org/10.1016/j.nimb.2005.08.068
Y. Sakoi, M. Miyamoto, K. Ono, M. Sakamoto. Helium irradiation effects on deuterium retention in tungsten. J. Nucl. Mater. 442, S715 (2013). https://doi.org/10.1016/j.jnucmat.2012.10.003
F. Liu, Sh. Peng, H. Ren, Zh. Long, W. Han, J. Yu, Zh. Chen, K. Zhu. Effect of the displacement damage from argon ion irradiation on the synergistic effect of helium-hydrogen in tungsten. Fusion Eng. Des. 89, 2516 (2014). https://doi.org/10.1016/j.fusengdes.2014.05.023
Y. Nobuta, Y. Hatano, M. Matsuyama, S. Abe, Y. Yamauchi, T. Hino. Helium irradiation effects on tritium retention and long-term tritium release properties in poly-crystalline tungsten. J. Nucl. Mater. 463, 993 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.047
C. Garc'ıa-Rosales, P. Franzen, H. Plank, J. Roth, E. Gauthier. Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade. J. Nucl. Mater. 233-237, 803 (1996). https://doi.org/10.1016/S0022-3115(96)00185-7
I. Bizyukov, K. Krieger, N. Azarenkov, S. Levchuk, Ch. Linsmeier. Formation of D inventories and structural modifications by deuterium bombardment of tungsten thin films. J. Nucl. Mater. 337-339, 965 (2005). https://doi.org/10.1016/j.jnucmat.2004.09.048
J. Matej'ıcek, P. Chr'aska, J. Linke. Thermal spray coatings for fusion applications. Review. J. Thermal Spray Technol. 16, 64 (2007). https://doi.org/10.1007/s11666-006-9007-2
A.V. Golubeva, V.A. Kurnaev, M. Mayer, I. Rot. Capture of deuterium into plasma-sputtered tungsten. Vopr. At. Nauki Tekhn. Ser. Termoyad. Sintez No. 2, 18 (2007) (in Russian).
G. De Temmerman, R. P. Doerner. Deuterium retention and release in tungsten co-deposited layers. J. Nucl. Mater. 389, 479 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.028
Y. Zhang, W. Wang, H. Ren, W. Han, F. Liu, J. Yu, Sh. Peng, K. Zhu. Hydrogen irradiation effect of W thin films prepared by magnetron sputtering deposition. Nucl. Instrum. Meth. B 307, 357 (2013). https://doi.org/10.1016/j.nimb.2013.04.026
K. Katayama, K. Uehara, H. Date, S. Fukada, H. Watanabe. Temperature dependence of deuterium retention in tungsten deposits by deuterium ion irradiation. J. Nucl. Mater. 463, 1033 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.103
V.Kh. Alimov, J. Roth, W. M. Shu, D. A. Komarov, K. Isobe, T. Yamanishi. Deuterium trapping in tungsten deposition layers formed by deuterium plasma sputtering. J. Nucl. Mater. 399, 225 (2010). https://doi.org/10.1016/j.jnucmat.2010.01.024
V.V. Bobkov, A.V. Onishchenko, O.V. Sobol, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.P. Tishchenko. Ion-implanted deuterium accumulation in a deposited tungsten coating. J. Surf. Invest. X-ray 4, 852 (2010). https://doi.org/10.1134/S1027451010050289
V.V.Bobkov, L.P.Tishchenko, A.V.Onishchenko, E.N. Zubarev, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.A. Gamayunova. Implantation of helium and deuterium ions into tungsten-coated composite structures. J. Surf. Invest. X-ray 5, 806 (2011). https://doi.org/10.1134/S1027451011080052
V.V. Bobkov, L.P. Tishchenko, T.I. Peregon, Yu.I. Kovtunenko. Hydrogen isotope retention and lattice damage in the constructive materials irradiated with H+/D+ ions. East Eur. J. Phys. 3, No. 3, 47 (2016).
N.A. Azarenkov, V.V. Bobkov, L.P. Tishchenko, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.A. Gamayunova. Sequential implantations of deuterium and helium ions into tungsten-coated composite structures. Probl. Atom. Sci. Technol. Ser. Plasma Physics 3, No. 6, 73 (2016).
J.P. Biersack, J.F. Ziegler. The stopping and range of ions in solids. In: Ion Implantation Techniques (Springer, 1982), p. 122. https://doi.org/10.1007/978-3-642-68779-2_5
B.M. Smirnov. Atomic Collisions and Elementary Processes in Plasma (Atomizdat, 1968) (in Russian).
L.P. Tishchenko, T.I. Peregon, Yu.I. Kovtunenko, V.V. Bobkov, A.V. Onishchenko, R.I. Starovoitov. Investigation of the capture processes and gas evolution of ion-implanted deuterium from tungsten films. Izv. Ross. Akad. Nauk. Ser. Fiz. 70, 1197 (2006) (in Russian).
T. Hino, Y. Yamauchi, Y. Hirohata. Helium retention of plasma facing materials. J. Nucl. Mater. 266-269, 538 (1999). https://doi.org/10.1016/S0022-3115(98)00587-X
Zh. Fu, N. Yoshida, H. Iwakiri, Z. Xu. Thermal desorption and surface modification of He+ implanted into tungsten. J. Nucl. Mater. 329-333, 692 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.190
S. Nagata, K. Takahiro, S. Horiike, S. Yamaguchi. Retention and release of deuterium implanted in W and Mo. J. Nucl. Mater. 266-269, 1151 (1999). https://doi.org/10.1016/S0022-3115(98)00520-0
A. Manhard, K. Schmid, M. Balden, W. Jacob. Influence of the microstructure on the deuterium retention in tungsten. J. Nucl. Mater. 415, S632 (2011). https://doi.org/10.1016/j.jnucmat.2010.10.045
V.V. Bobkov, R.I. Starovoitov, L.P. Tishchenko, E.N. Zubarev, Yu.I. Kovtunenko, Yu.E. Logachev. The influence of deuterium and helium implanted ions on the structure of condensed tungsten coating. In: Proceedings of the 20th International Conference on Ion-Surface Interactions, Zvenigorod, Russia, August 25-29 (2011), Vol. 2, p. 61.
V.V. Bobkov, R.I. Starovoitov, L.P. Tishchenko, Yu.I. Kovtunenko, L.A. Gamayunova. Deuterium-ion implantation into composite structures with tungsten coatings. J. Surf. Invest. X-ray 8, 853 (2014). https://doi.org/10.1134/S1027451014030264
G. Carter. Thermal resolution of desorption energy spectra. Vacuum 12, 245 (1962). https://doi.org/10.1016/0042-207X(62)90526-2
V.S. Efimov, Yu.M. Gasparyan, A.A. Pisarev. Investigation of a fine structure of deuterium thermal desorption spectra from tungsten. In: Proceedings of the 20th International Conference on Ion-Surface Interactions, Zvenigorod, Russia, August 25-29 (2001), Vol. 1, p. 306.
H. Eleveld, A. van Veen. Void growth and thermal desorption of deuterium from voids in tungsten. J. Nucl. Mater. 212, 1421 (1994). https://doi.org/10.1016/0022-3115(94)91062-6
R. Sakamoto, T. Muroga, N. Yoshida. Microstructural evolution induced by low energy hydrogen ion irradiation in tungsten. J. Nucl. Mater. 220, 819 (1995). https://doi.org/10.1016/0022-3115(94)00622-9
S. O'hira, A. Steiner, H. Nakamura, R. Causey, M. Nishi, S. Willms. Tritium retention study of tungsten using various hydrogen isotope irradiation. J. Nucl. Mater. 258, 990 (1998). https://doi.org/10.1016/S0022-3115(98)00315-8
V.V. Kirsanov. Defects in Crystals and Their Computer Simulation (Nauka, 1980) (in Russian).
A. Debelle, P.-E. Lhuillie, M.-F. Barthe, T. Sauvage, P. Desgardin. Helium desorption in 3He implanted tungsten at low fluence and low energy. Nucl. Instrum. Meth. B 268, 223 (2010). https://doi.org/10.1016/j.nimb.2009.10.176
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.