Природа самодифузії в рідинах
DOI:
https://doi.org/10.15407/ujpe63.12.1076Ключові слова:
коефіцієнт самодифузії, зсувна в'язкість, молекулярні рідиниАнотація
Робота присвячена обговоренню природи самодифузiї в низькомолекулярних рiдинах. Особлива увага придiляється атомарним рiдинам типу аргону, рiдким металам та асоцiйованим рiдинам типу води. Пiдкреслюється, що коефiцiєнт самодифузiї усiх рiдин зазначеного типу є сумою двох складових: однiєї, що є зумовленою переносом молекул гiдродинамiчними вихровими модами, i другої, що породжується циркуляторним рухом локальних груп молекул. Обидвi складовi мають колективну природу, є генетично пов’язаними й вiдрiзняються мiж собою тiльки масштабами: першi є мезоскопiчними, другi – наноскопiчними. Обговорюється прояв колективного вихрового переносу молекул у специфiцi часової залежностi середньоквадратичного змiщення молекули. Подаються вагомi аргументи щодо неадекватностi активацiйного механiзму теплового руху молекул у низькомолекулярних рiдинах, доводиться внутрiшня суперечливiсть експоненцiальних залежностей для коефiцiєнтiв в’язкостi й самодифузiї. В усiх випадках перевага надається, перш за все, якiсним аргументам.
Посилання
E.I. Kharkov, V.I. Lysov, V.E. Fedorov. Physics of Liquid Metals (Vyshcha Shkola, Kyiv, 1979) (in Russian).
L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137, 1 (2008). https://doi.org/10.1016/j.molliq.2007.05.003
I.Z. Fisher. Hydrodynamic asymptotics of autocorrelation function of molecular velocity in classical fluid. Zh. ` Eksp. Teor. Fiz. 61, 1647 (1971) (in Russian).
N.P. Malomuzh, I.Z. Fisher. On the collective nature of thermal motion in fluids. Fiz. Zhidk. Sost. 1, 33 (1973) (in Russian).
L.A. Bulavin, A.A. Vasilkevich, A.K. Dorosh, V.T. Krotenko, V.I. Slisenko. Self-diffusion of water in aqueous solutions of singly charged electrolytes. Ukr. Fiz. Zh. 31, 1703 (1986) (in Russian).
L.A. Bulavin, P.G. Ivanitskii, V.T. Krotenko, V.N. Lyaskovskaya. Neutron studies of water self-diffusion in aqueous electrolyte solutions. Zh. Fiz. Khim. 61, 3270 (1987) (in Russian).
N.P. Malomuzh, K.S. Shakun. Maxwell relaxation time for argon. Physica (to be published).
T.V. Lokotosh, N.P. Malomuzh, K.N. Pankratov. Thermal motion in water-electrolyte solutions according to quasi- elastic incoherent neutron scattering data. J. Chem. Eng. Data 55, 2021 (2010). https://doi.org/10.1021/je9009706
A. Einstein. Eine neue Bestimmung der Molekuldimensionen. Ann. Phys. 19, 289 (1906). https://doi.org/10.1002/andp.19063240204
E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1993).
J. Frenkel. Kinetic Theory of Liquids (Dover, 1955).
E.N. da C. Andrade. The viscosity of liquids. Proc. Phys. Soc. 52, 748 (1940). https://doi.org/10.1088/0959-5309/52/6/302
H. Eyring. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936). https://doi.org/10.1063/1.1749836
CRS Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. Edited by R.C. West, (CRS Press, 1996).
NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Edited by P.J. Linstrom, W.G. Mallar [http://webbook.nist.gov].
V.P. Slusar, N.S. Rudenko, V.M. Tretyakov. Experimental study of the viscosity of simple substances on the saturation line and under pressure. II Argon, krypton, xenon. Ukr. Fiz. Zh. 17, 1257 (1972) (in Russian).
V.N. Makhlaichuk. Kinematic shear viscosity of liquid alkaline metals. Ukr. J. Phys. 62, 672, (2017). https://doi.org/10.15407/ujpe62.08.0672
O.Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultants Bureau, 1965).
T. Iida, N. Tripathi, M. Isac, R.I.L. Guthrie. Models and equations for atomic transport coefficients of liquid metals: Viscosity and self-diffusivity. Mater. Sci. Forum 539–543, 2509 (2007). https://doi.org/10.4028/www.scientific.net/MSF.539-543.2509
T.V. Lokotosh, M.P. Malomuzh, K.M. Pankratov, K.S. Shakun. New results in the theory of collective self-diffusion in liquids. Ukr. Fiz. Zh. 60, 697 (2015) (in Ukrainian).
P.V. Makhlaichuk, M.P. Malomuzh, I.V. Zhyganiuk. Nature of hydrogen bond in water. Ukr. J. Phys. 57, 113 (2012).
D. Eisenberg, V. Kauzmann. The Structure and Properties of Water (Oxford Univ. Press, 1969). C.A. Croxton. Liquid State Physics – A Statistical Mechanical Introduction (Cambridge Univ. Press, 1974).
N.P. Malomuzh, V.P. Oleynik. Nature of the kinematic shear viscosity of water. J. Struct. Chem. 49, 1055 (2008). https://doi.org/10.1007/s10947-008-0178-1
L.A. Bulavin, A.I. Fisenko, N.P. Malomuz. Surprisin properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008). https://doi.org/10.1016/j.cplett.2008.01.028
K. Okada, M. Yao, Y. Hiejima, H. Kohno, Y. Kojihara. Dielectric relaxation of water and heavy water in the whole fluid phase. J. Chem. Phys. 110, 3026 (1999). https://doi.org/10.1063/1.477897
H.R. Pruppacher. Self-diffusion coefficient of supercooled water. J. Chem. Phys. 56, 101 (1972). https://doi.org/10.1063/1.1676831
K. Simpson, M. Karr. Diffusion and nuclear spin relaxation in water. Phys. Rev. 111, 1201 (1958) https://doi.org/10.1103/PhysRev.111.1201
L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov. The character of the thermal motion of water molecules according to the data of quasi-elastic incoherent slow neutron scattering. Zh. Strukt. Khim. 47, 54 (2006) (in Russian).
L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov. Specific features of self-diffusion in water.Zh. Strukt. Khim. 47, S54 (2006) (in Russian).
L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, 136 (2006). https://doi.org/10.1016/j.molliq.2005.11.027
T.V. Lokotosh, S. Magazu, G. Maisano, N.P. Malomuzh. Nature of self-diffusion and viscosity in supercooled liquid water. Phys. Rev. E 62, 3572 (2000). https://doi.org/10.1103/PhysRevE.62.3572
P.V. Makhlaichuk, V.N. Makhlaichuk, N.P. Malomuzh. Nature of the kinematic shear viscosity of low-molecular liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577 (2017). https://doi.org/10.1016/j.molliq.2016.11.101
N.P. Malomuzh, K.S. Shakun, A.A. Kuznetsova. New possibilities provided by the analysis of the molecular velocity autocorrelation function in liquids. Ukr. Fiz. Zh. 63, 317 (2018) (in Ukrainian). https://doi.org/10.15407/ujpe63.4.317
V.M. Makhlaichuk. Qualitative properties of shear viscosity in liquids. Ukr. Fiz. Zh. (to be published) (in Ukrainian). https://doi.org/10.15407/ujpe63.11.986
P. Resibois, M. De Leener. Classical Kinetic Theory of Fluids (Wiley, 1978).
V.S. Oskotskii. To the theory of quasi-elastic scattering of cold neutrons in liquids. Fiz. Tverd. Tela 5, 1082 (1962) (in Russian).
S.A. Mikhailenko, V.V. Yakuba, A.E. Butko. Self-diffusion and nuclear magnetic relaxation in methane-argon liquid mixtures. Fiz. Nizk. Temp. 4, 562 (1978) (in Russian).
S.A. Mikhailenko, V.V. Yakuba. Self-diffusion and nuclear magnetic relaxation in liquid propylene and its mixtures with krypton. Ukr. Fiz. Zh. 27, 712 (1982) (in Russian).
T.V. Lokotosh, N.P. Malomuzh. Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids. Physica A 286, 474 (2000). https://doi.org/10.1016/S0378-4371(00)00107-2
T.V. Lokotosh, N.P. Malomuzh. Manifestation of the collective effects in the rotational motion of molecules in liquids. J. Mol. Liq. 93, 95 (2001). https://doi.org/10.1016/S0167-7322(01)00214-8
T.V. Lokotosh, N.P. Malomuzh, K.S. Shakun. Nature of oscillations for the autocorrelation functions for transversal and angular velocities of a molecule. J. Mol. Liq. 96–97, 245 (2002). https://doi.org/10.1016/S0167-7322(01)00351-8
V.P. Voloshin, G.G. Malenkov, Yu.I. Naberukhin. The study of collective motions in computer models of water. Large-scale and long-term correlations. Zh. Strukt. Khim. 54 S2, 239 (2013) (in Russian).
G.G. Malenkov, Y.I. Naberukhin, V.P. Voloshin. Collective effects in molecular motions in liquids. Russ. J. Phys. Chem. A 86, 1378 (2012). https://doi.org/10.1134/S003602441209004X
A.V. Anikeenko, G.G. Malenkov, Yu.I. Naberukhin. Vizualization of the collective vortex-like motions in liquid argon and water: Molecular dynamic simulation. J. Chem. Phys. 148, 094508 (2018). https://doi.org/10.1063/1.5018140
N.P. Malomuzh, V.N. Makhlaichuk. Theory of self-diffusion in liquid metals. Rasplavy 5, 561 (2018) (in Russian).
N.P. Malomuzh, V.N. Makhlaychuk. Peculiarities of self-diffusion and shear viscosity in transition and post-transition metals. Rasplavy 5, 578 (2018) (in Russian).
V.M. Makhlaichuk. Shear viscosity of aqueous electrolyte solutions. Ukr. Fiz. Zh. (to be published) (in Ukrainian).
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.