Фотоелектричні властивості плівок SiGe, покритих шарами аморфного та полікристалічного кремнію

Автор(и)

  • V. Shmid Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A. Podolian Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A. Nadtochiy Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O. Korotchenkov Taras Shevchenko National University of Kyiv, Faculty of Physics
  • B. Romanyuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. Melnik V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. Popov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • O. Kosulya V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe64.5.415

Ключові слова:

фото-ЕРС, SiGe, a-Si, poly-Si

Анотація

Виявлено, що тонкi шари аморфного та полiкристалiчного Si (вiдповiдно a-Si та poly-Si), нанесенi на поверхню Ge0,25Si0,75, суттєво зменшують величину негативної фото-ЕРС, вiдтворюванiй у шарi Ge0,25Si0,75, нанесеному на пiдкладку кристалiчного Si. У той самий час, при достатнiй глибинi проникнення свiтла, що включає обидва нанесенi шари та приповерхневу область пiдкладки Si, у промiжки часу, бiльшi за ≈10–20 мкс пiсля закiнчення свiтлового iмпульсу, спостерiгається фото-ЕРС позитивного знака. Виявлено також, що насичення киснем шару a-Si в гетероструктурi a-Si/Ge0,25Si0,75/c-Si призводить до суттєвого зростання величини додатної складової сигналу фото-ЕРС (в 6 разiв у наших експериментах). Такий ефект може бути використано для розробки ефективних сонячних елементiв на основi гетероструктури a-Si/GexSi1−x/c-Si.

Посилання

A. Sch?uppen. SiGe-HBTs for mobile communication. Solid-State Electron. 43, 1373 (1999). https://doi.org/10.1016/S0038-1101(99)00076-3

K. Washio. SiGe HBT and BiCMOS technologies for optical transmission and wireless communication systems. IEEE Trans. Electron. Dev. 50, 656 (2003). https://doi.org/10.1109/TED.2003.810484

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tada, N. Haneji. Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators. Phys. E 43, 1433 (2011). https://doi.org/10.1016/j.physe.2011.03.021

A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, K. Nakajima, Y. Shiraki. Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure. Appl. Phys. Lett. 83, 1258 (2003). https://doi.org/10.1063/1.1600838

H. Ferhati, F. Djeffal, Role of non-uniform Ge concentration profile in enhancing the efficiency of thin-film SiGe/Si solar cells. Optik 158, 192 (2018). https://doi.org/10.1016/j.ijleo.2017.12.091

X. Zhao, D. Li, T. Zhang, B. Conrad, L. Wang, A. H. Soeriyadi, J. Han, M. Diaz, A. Lochtefeld, A. Gerger, I. Perez-Wurfl, A. Barnett. Short circuit current and efficiency improvement of SiGe solar cell in a GaAsP-SiGe dual junction solar cell on a Si substrate. Sol. Energ. Mater. Sol. Cell. 159, 86 (2017). https://doi.org/10.1016/j.solmat.2016.08.037

A.A. Shklyaev, V. A. Volodin, M. Stoffel, H. Rinnert, M. Vergnat. Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting. J. Appl. Phys. 123, 015304 (2018). https://doi.org/10.1063/1.5009720

A.G. Aberle, S. Glunz, W. Warta. Impact of illumination level and oxide parameters on Shockley-Read-Hall recombination at the Si-SiO2 interface. J. Appl. Phys. 71, 4422 (1992). https://doi.org/10.1063/1.350782

D. Diouf, J.P. Kleider, T. Desrues, P.-J. Ribeyron. Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells. Energ. Proc. 2, 59 (2010). https://doi.org/10.1016/j.egypro.2010.07.011

R. Pandey, R. Chaujar. Rear contact SiGe solar cell with SiC passivated front surface for >90-percent external quantum efficiency and improved power conversion efficiency. Sol. Energy 135, 242 (2016). https://doi.org/10.1016/j.solener.2016.05.056

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Edited by W.G.J.H.M. van Sark, L. Korte, F. Roca (Springer, 2012) [ISBN: 978-3-642-22274-0].

Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells, edited by W.R. Fahrner (Chemical Industry Press and Springer, 2013) [ISBN: 978-3-642-37038-0].

S. Dauwe, J. Schmidt, R. Hezel. Very low surface recombination velocities on p- and n-type silicon wafers passivated with hydrogenated amorphous silicon films. In Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana, May 19-24, 2002 (2002), p. 1246.

T. Krajangsang, S. Inthisang, J. Sritharathikhun, A. Hongsingthong, A. Limmanee, S. Kittisontirak, P. Chinnavornrungsee, R. Phatthanakun, K. Sriprapha. An intrinsic amorphous silicon oxide and amorphous silicon stack passivation layer for crystalline silicon heterojunction solar cells. Thin Solid Films 628, 107 (2017). https://doi.org/10.1016/j.tsf.2017.03.010

R.A. Street. Hydrogenated Amorphous Silicon (Cambridge Univ. Press, 2005) [ISBN: 9780521019347].

Y. Yan, M. Page, T.H. Wang, M.M. Al-Jassim, H.M. Branz, Q. Wang, Atomic structure and electronic properties of c-Si/a-Si:H heterointerfaces. Appl. Phys. Lett. 88, 121925 (2006). https://doi.org/10.1063/1.2189670

M.D?urr, U.H?ofer. Hydrogen diffusion on silicon surfaces. Prog. Surf. Sci. 88, 61 (2013). https://doi.org/10.1016/j.progsurf.2013.01.001

J.P. Seif, D. Menda, A. Descoeudres, L. Barraud, O. ? Ozdemir, C. Ballif, S. De Wolf. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance. J. Appl. Phys. 120, 054501 (2016). https://doi.org/10.1063/1.4959988

U. R?omer, R. Peibst, T. Ohrdes, B. Lim, J. Kr?ugener,

E. Bugiel, T. Wietler, R. Brendel. Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions, Sol. Energ. Mat. Sol. Cell. 131, 85 (2014). https://doi.org/10.1016/j.solmat.2014.06.003

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. J. Merkel, P. Plocica, S. Steffens, B. Rech. Polycrystalline silicon thin-film solar cells: Status and perspectives. Sol. Energy Mater. Sol. Cells 119, 112 (2013). https://doi.org/10.1016/j.solmat.2013.05.043

R. Peibst, U. R?omer, Y. Larionova, M. Rien?acker, A. Merkle, N. Folchert, S. Reiter, M. Turcu, B. Min, J. Kr?ugener, D. Tetzlaff, E. Bugiel, T. Wietler, R. Brendel. Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? Sol. Energy Mater. Sol. Cells 158, 60 (2016). https://doi.org/10.1016/j.solmat.2016.05.045

C.H. Seager, D.S. Ginley. Passivation of grain bound-aries in polycrystalline silicon. Appl. Phys. Lett. 34, 337 (1979). https://doi.org/10.1063/1.90779

A. Mimura, N. Konishi, K. Ono, J-I. Ohwada, Y. Hosokawa, Y-A. Ono, T. Suzuki, K. Miyata, H. Kawakami. High performance low-temperature poly-Si n-channel TFTs for LCD. IEEE Trans. Electron Devices 36, 351 (1989). https://doi.org/10.1109/16.19936

N. Sridhar, D.D.L. Chung, W.A. Anderson, J. Coleman. Polysilicon films of high photoresponse, obtained by vacuum annealing of aluminum capped hydrogenated amorphous silicon. J. Appl. Phys. 78, 7304 (1995). https://doi.org/10.1063/1.360769

J.A. Peck, P. Zonooz, D. Curreli, G.A. Panici, B.E. Jurczyk, D.N. Ruzic. High deposition rate nanocrystalline and amorphous silicon thin film production via surface wave plasma source. Surf. Coat. Technol. 325, 370 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.074

S. Honda, T. Mates, B. Rezek, A. Fejfar, J. Ko?cka. Microscopic study of the H2O vapor treatment of the silicon grain boundaries. J. Non-Cryst. Sol. 354, 2310 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.09.107

S.A. Hadi, P. Hashemi, A. Nayfeh, J.L. Hoyt. Thin film a-Si/c-Si1?xGex/c-Si heterojunction solar cells: Design and material quality requirements. ECS Trans. 41, 3 (2011).

E. Kadri, M. Krichen, A.B. Arab. Analytical method for the analysis of thin SiGe/Si solar cells with front surface field. Opt. Quant. Electron. 48, 305 (2016). https://doi.org/10.1007/s11082-016-0574-2

E. Kadri, K. Dhahri, A. Zaafouri, M. Krichen, M. Rasheed, K. Khirouni, R. Barill?e. ac conductivity and dielectric behavior of thin films synthesized by molecular beam epitaxial method. J. Alloy. Compd. 705, 708 (2017). https://doi.org/10.1016/j.jallcom.2017.02.117

A. Podolian, A. Nadtochiy, O. Korotchenkov, B. Romanyuk, V. Melnik, V. Popov. Enhanced photoresponse of Ge/Si nanostructures by combining amorphous silicon deposition and annealing. J. Appl. Phys. 124, 095703 (2018). https://doi.org/10.1063/1.5029948

M.Ya. Valakh, P.M. Lytvyn, A.S. Nikolenko, V.V. Strelchuk, Z.F. Krasilnik, D.N. Lobanov, A.V. Novikov. Gigantic uphill diffusion during self-assembled growth of Ge quantum dots on strained SiGe sublayers. Appl. Phys. Lett. 96, 141909 (2010). https://doi.org/10.1063/1.3383241

A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat. Thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl. 12, 113 (2004). https://doi.org/10.1002/pip.533

J. Humlicek, F. Lukes, E. Schmidt. Silicon-germanium alloys (SixGe1?x). In Handbook of Optical Constants of Solids. Edited by E.D. Palik (Academic Press, 1998), Part 2, Subpart 2 [ISBN: 0-12-544422-2]. https://doi.org/10.1016/B978-0-08-055630-7.50039-0

L. Kronik, Y. Shapira. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1 (1999). https://doi.org/10.1016/S0167-5729(99)00002-3

C.G.V. de Walle, R.M. Martin. Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621 (1986). https://doi.org/10.1103/PhysRevB.34.5621

O.V. Vakulenko, S.V. Kondratenko, A.S. Nikolenko, S.L. Golovinskiy, Yu.N. Kozyrev, M.Yu. Rubezhanska, A.I. Vodyanitsky. Photoconductivity spectra of Ge/Si heterostructures with Ge QDs. Nanotechnology 18, 185401 (2007). https://doi.org/10.1088/0957-4484/18/18/185401

S. Tardon, R. Br?uggemann. Characterization of the interface properties in a-Si:H/c-Si heterostructures by photoluminescence. J. Phys. D 43, 115102 (2010). https://doi.org/10.1088/0022-3727/43/11/115102

T.F. Schulze, L. Korte, E. Conrad, M. Schmidt, B. Rech. Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. J. Appl. Phys. 107, 023711 (2010). https://doi.org/10.1063/1.3267316

A. Nadtochiy, O. Korotchenkov, B. Romanyuk, V. Melnik, V. Popov. Photovoltage improvements in Cz-Si by low-energy implantation of carbon ions. Mater. Res. Express 3, 055017 (2016). https://doi.org/10.1088/2053-1591/3/5/055017

Опубліковано

2019-06-18

Як цитувати

Shmid, V., Podolian, A., Nadtochiy, A., Korotchenkov, O., Romanyuk, B., Melnik, V., Popov, V., & Kosulya, O. (2019). Фотоелектричні властивості плівок SiGe, покритих шарами аморфного та полікристалічного кремнію. Український фізичний журнал, 64(5), 415. https://doi.org/10.15407/ujpe64.5.415

Номер

Розділ

Напівпровідники і діелектрики