Electrolytic Fabrication of Zinc Oxide Nanoparticles

Authors

  • V. R. Gaevs’kyi National University of Water Management and Nature Resources Use
  • B. D. Nechyporuk Rivne State Humanitarian University
  • N. Yu. Novoselets’kyi Rivne State Humanitarian University
  • B. P. Rudyk National University of Water Management and Nature Resources Use

DOI:

https://doi.org/10.15407/ujpe58.04.0385

Keywords:

ZnO, nanocrystals, wet method, XRD, particle size, optical properties, band gap

Abstract

A possibility of electrolytic fabrication of zinc oxide nanocrystals with the use of zinc electrodes and the aqueous solution of sodium chloride as an electrolyte has been demonstrated. The x-ray analysis of obtained nanoparticles shows that their size is of the order of 30 nm. The researches of the electrolyte transmission spectra registered after the main experiment has been terminated show that the energy gap width in ZnO nanoparticles is 3.35 eV, which agrees with the corresponding value for ZnO single crystals.

References

<ol>
<li> S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009).&nbsp;<a href="https://doi.org/10.1088/1468-6996/10/1/013001">https://doi.org/10.1088/1468-6996/10/1/013001</a></li>
<li> B. Mari, M. Molar, A. Mechkour et al., Microelectron. J. 35, 79 (2004).&nbsp;<a href="https://doi.org/10.1016/S0026-2692(03)00227-1">https://doi.org/10.1016/S0026-2692(03)00227-1</a></li>
<li> H. Pan, Y. Zhu, Z. Ni et al., J. Nanosci. Nanotechnol. 5, 1683 (2005).&nbsp;<a href="https://doi.org/10.1166/jnn.2005.183">https://doi.org/10.1166/jnn.2005.183</a></li>
<li> V.S. Burlakov, N.V. Tarasenko et al., Zh. Tekhn. Fiz. 81, 2 (2011).</li>
<li> D.M. Freik and B.P. Yatsyshyn, Fiz. Khim. Tverd. Tila 8, 1 (2007).</li>
<li> V.V. Filonenko, B.P. Rudyk, B.D. Nechyporuk, M.Yu. Novoselets'kyi, and Yu.P. Lavoryk, in Theory and Practice of Modern Natural Science(Kherson, 2007), p. 33 (in Ukrainian).</li>
<li> Yu.P. Lavoryk, B.D. Nechyporuk, M.Yu. Novoselets'kyi, B.P. Rudyk, V.V. Filonenko, and O.V. Parasyuk, Patent Ukraine 92078, MPK C22B19/00, C01G9/00 (2010).</li>
<li> V.I. Gavrilenko, A.M. Grekhov, D.V. Korbutyak, and V.G. Litovchenko, Optical Properties of Semiconductors: A Handbook (Naukova Dumka, Kiev, 1987) (in Russian).</li>
<li> X-Ray Diffraction Analysis. Identification of X-Ray Diffraction Patterns. Reference Guide, edited by L.I. Mirkin (Nauka, Moscow, 1981) (in Russian).</li>
<li> V.I. Lisoivan, Measurement of Unit-Cell Parameters on a Single-Crystal Spectrometer (Nauka, Novosibirsk, 1982) (in Russian).</li>
<li> L. Shen, N. Bao, K. Yanagisawa, K. Domen, A. Gupta, and C.A. Grimes, Nanotechnology 17, 5117 (2006).&nbsp;<a href="https://doi.org/10.1088/0957-4484/17/20/013">https://doi.org/10.1088/0957-4484/17/20/013</a></li>
<li> M.A. Blokhin and I.G. Shveitser, Handbook on X-Ray Spectroscopy (Nauka, Moscow, 1982) (in Russian).</li>
<li> Z. Fan and J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005).&nbsp;<a href="https://doi.org/10.1166/jnn.2005.182">https://doi.org/10.1166/jnn.2005.182</a></li>
<li> G.H. Cameron and A.L. Patterson, in Symposium on Radiography and X-Ray Diffraction Methods, 1936 (American Society for Testing Materials, Philadelphia, 1937), p. 324.</li>
</ol>

Published

2018-10-06

How to Cite

Gaevs’kyi, V. R., Nechyporuk, B. D., Novoselets’kyi, N. Y., & Rudyk, B. P. (2018). Electrolytic Fabrication of Zinc Oxide Nanoparticles. Ukrainian Journal of Physics, 58(4), 385. https://doi.org/10.15407/ujpe58.04.0385

Issue

Section

Nanosystems