Релятивістський розгляд безспінового рівняння Cолпітера з модифікованим потенціалом Хіллерааса

Автор(и)

  • A. D. Antia Department of Physics, Faculty of Science, University of Uyo
  • I. B. Okon Department of Physics, Faculty of Science, University of Uyo
  • E. B. Umoren Department of Physics, Faculty of Science, University of Uyo
  • C. N. Isonguyo Department of Physics, Faculty of Science, University of Uyo

DOI:

https://doi.org/10.15407/ujpe64.1.27

Ключові слова:

Schr¨odinger wave equation, modified Hylleraas potential, spinless Salpeter equation, Nikiforov–Uvarov method, potential barrier

Анотація

Методом Никифорова–Уварова вирiшено безспiнове рiвняння Солпiтера з модифiкованим потенцiалом Хiллерааса. Розрахованi власнi значення енергiї, i хвильовi функцiї системи вираженi через полiноми Якобi. Використовуючи схему наближення, оцiнено потенцiальний бар’єр. Результати можуть бути застосованi в ядернiй фiзицi, хiмiчнiй фiзицi, молекулярнiй хiмiї та сумiжних областях, наприклад, при вивченнi енергiї зв’язку i взаємодiї деяких двоатомних молекул. Змiною параметрiв наш потенцiал можна звести до потенцiалiв Розена–Морзе i Хюльтена. Наведено чисельнi данi про енергетичнi спектри системи.

Посилання

E.M. Zayed, S.A. Ibrahim. Exact solutions of nuclear evolution equations in mathematical physics using the modified simple equation method. Chin. Phys. Lett.29, 6 (2009).

H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, A.A. Rajabi. Duffin–Kemmer–Petiau equation under a scalar Coulomb interaction. Phys. Rev. C 84, 064003 (2011). https://doi.org/10.1103/PhysRevC.84.064003

W. Lucha, F.F. Schoberl. Semi-relativistic treatment of bound state. Int. J. Mod. Phys. A 17, 2333 (2002).

B.I. Ita, A.I. Ikeuba. Solutions to the Schr?odinger equation with inversely quadratic Yukawa plus inversely quadratic Hellmann potential using Nikiforov–Uvarov method. J. At. and Mol. Phys. 20, 1 (2013).

P. Maris, C.D.Robert. Dyson–Schwinger equations: A tool for hadron physics. Int. J. Mod. Phys. E 12, 197 (2003). https://doi.org/10.1142/S0218301303001326

P. Maris, C.D. Robert. п? and K-meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369 (1997). https://doi.org/10.1103/PhysRevC.56.3369

R. Hall, W. Lucha, F.F. Schoberl. Discrete spectra of semirelativistic Hamiltonians. Int. J. Mod. Phys. A. 18, 2657 (2003). https://doi.org/10.1142/S0217751X0301406X

R. Hall, W.Lucha. Schr?odinger secant lower bounds to semi-relativistic eigen values. Int. J. Mod Phys. A.22, 1899 (1994). https://doi.org/10.1142/S0217751X07036312

G.C. Wick. Properties of Bethe–Salpeter wave functions. Phys. Rev. 96, 1124 (1954). https://doi.org/10.1103/PhysRev.96.1124

E.E. Salpeter, H.A. Bethe. A relativistic equation for bound-state problems. Phys. Rev. 84, 1232 (1951). https://doi.org/10.1103/PhysRev.84.1232

S. Hassanabadi, M. Ghominejad, S. Zarrinkamar, H. Hassanabadi. The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics approach. Chin. Phys. B 22, 060303 (2013). https://doi.org/10.1088/1674-1056/22/6/060303

H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo.Spectrum of hyperbolic potential via SUSYQM within the semi-relativistic formalism. Chin. J. Phys. 50, 783 (2012).

S. Zarrinkamar, A.A. Rajabi, H. Hassanabadi. Solution of the two-body Salpeter equation under an exponential potential for any l state. Few-Body Systems 52, 165 (2012). https://doi.org/10.1007/s00601-011-0272-3

A.N. Ikot, C.N. Isonguyo, Y.E. Chad-Umoren, H. Hassanabadi. Solution of spinless Salpeter equation with generalised Hulthen potential using SUSYQM. Acta Phys. Polonica A 127, 674 (2015). https://doi.org/10.12693/APhysPolA.127.674

A.D.Antia, A.N. Ikot, I.O. Akpan, O.A. Awoga. Approximate solution of the Klein–Gordon equation with unequal scalar and vector modified Hylleraas potential. Ind. J. Phys. 87, 155 (2013). https://doi.org/10.1007/s12648-012-0210-3

F. Yasuk, M.K. Bahar. Approximate solution of Dirac equation with position-dependent mass for the Hulthen potential by the asymptotic iteration method. Phys. Scr. 85, 045004 (2012). https://doi.org/10.1088/0031-8949/85/04/045004

H. Hassanabadi, E. Maghsodi, S. Zarrinkamar. Relativistic symmetries of Dirac equation and the Tietz potential. Euro. Phys. J. Plus 127, 31 (2012). https://doi.org/10.1140/epjp/i2012-12031-1

O. Mustapha, R. Sever. Shifted 1/N for the Klein–Gordon equation with vector and scalar potentials. Phys. Rev. A 44, 4142 (1991). https://doi.org/10.1103/PhysRevA.44.4142

A.D. Antia, E.E. Ituen, H.P. Obong, C.N. Isonguyo. Analytical solution of the modified Coulomb potential using the factorisation method. Int. J. Rec. Adv. Phys. 4, 55 (2015). https://doi.org/10.14810/ijrap.2015.4104

S.M. Ikhdair, R. Sever. On solutions of the Schr?odinger equation for some molecular potentials: wave function ansatz. Cent. Eur. J. Phys. 6, 697 (2008).

H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, A.A. Rajabi. Duffin–Kemmer–Petiau equation under scalar Coulomb interaction. Phys. Rev. C 84, 064003 (2011). https://doi.org/10.1103/PhysRevC.84.064003

C. Tezan, R. Sever. A general approach for the exact solution of the Schr?odinger equation. Int. J. Theor. Phys. 48, 337 (2009). https://doi.org/10.1007/s10773-008-9806-y

A.F. Nikiforov, V.B. Uvarov. Special Functions of Mathematical Physics (Birkh?auser, 1998).

R.L. Greene, C. Aldrich. Variational wave functions for a screened Coulomb potential. Phys. Rev. A 14, 2363 (1976). https://doi.org/10.1103/PhysRevA.14.2363

A.N. Ikot. Solution to the Klein–Gordon equation with equal scalar and vector modified Hylleraas plus exponential Rosen–Morse potential. Chin. Phys. Lett. 29, 060307 (2012). https://doi.org/10.1088/0256-307X/29/6/060307

S. Debnath, B. Biswas. Analytical solution of the Klein–Gordon equation for Rosen–Morse potential via asymptotic iteration method. EJTP 26, 191 (2012).

A.N. Ikot, L.E. Akpabio, E.J. Uwah. Bound state solution of the Klein–Gordon equation with Hulthen potential. Elect. J. Theor. 8, 225 (2011).

K.M. Khanna, G.F. Kanyeki, S.K. Rotich, P.K. Torongey, S.E. Ameka. Anharmonic perturation of neutron-proton pairs by the unpaired neutron in heavy finite nuclei Ind. J. Pure and Appl. Phys. 48, 7 (2010).

Downloads

Опубліковано

2019-01-30

Як цитувати

Antia, A. D., Okon, I. B., Umoren, E. B., & Isonguyo, C. N. (2019). Релятивістський розгляд безспінового рівняння Cолпітера з модифікованим потенціалом Хіллерааса. Український фізичний журнал, 64(1), 27. https://doi.org/10.15407/ujpe64.1.27

Номер

Розділ

Загальна фізика