Вплив дефектів дивакансія-кисень на рекомбінаційні властивості n-Si після опромінення та наступного відпалу

Автор(и)

  • M. M. Kras’ko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. G. Kolosiuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Voitovych Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Yu. Povarchuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • I. S. Roguts’kyi Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.12.1095

Ключові слова:

гамма-опромiнення, дефект дивакансiя-кисень, час життя носiїв заряду, кремнiй

Анотація

Детально дослiджено змiну рекомбiнацiйних властивостей опромiненого y-квантами 60Со чи 1 МеВ електронами кремнiю n-типу провiдностi з концентрацiєю вiльних електронiв n0 ∼ 10^14–10^16 см^−3, вирощеного методом Чохральського (Cz n-Si), пiсля iзохронного вiдпалу в температурному дiапазонi 180–380 ∘С, в якому вiдбувається утворення та вiдпал комплексiв дивакансiя-кисень (V2О). Виявлено, що час життя нерiвноважних носiїв заряду (т) суттєво зменшується пiсля вiдпалу в дiапазонi ∼180–280 ∘С i цей ефект є сильнiшим у низькоомному n-Si. Показано, що змiна т пiсля вiдпалу в дiапазонi 180–380 ∘С зумовлена дефектом дивакансiйної природи, найiмовiрнiше V2O. Було визначено, аналiзуючи експериментальнi данi за допомогою статистики Шоклi–Рiда–Холла, що утворення V2O характеризується енергiєю активацiї Ea = 1,25±0,05 еВ i частотним фактором с0 = (1±0,5) · 10^9 с^−1, а їх вiдпал – енергiєю активацiї Eaann = 1,54±0,09 еВ i частотним фактором c0ann = (2,1±1,4) · 10^10 с^−1. Також отримано значення поперечного перерiзу захоплення дiрок (qp) одно- i двозарядними акцепторними станами V2O: (5±2) · 10^−13 i (8±4) · 10^−12 см^2 вiдповiдно.

Посилання

S.D. Brotherton, P. Bradley. Defect production and lifetime control in electron and y-irradiated silicon. J. Appl. Phys. 53, 5720 (1982) https://doi.org/10.1063/1.331460

A. Hallen, N. Keskitalo, F. Masszi, V. Nagl. Lifetime in proton irradiated silicon. J. Appl. Phys. 79, 3906 (1996). https://doi.org/10.1063/1.361816

H. Bleichner, P. Jonsson, N. Keskitalo, E. Nordlander. Temperature and injection dependence of the Shockley–Read–Hall lifetime in electron-irradiated p-type silicon, J. Appl. Phys. 79, 9142 (1996). https://doi.org/10.1063/1.362585

M. Kras'ko, A. Kraitchinskii, A. Kolosiuk, V. Voitovych, R. Rudenko, V. Povarchuk. Radiation damage of carrier lifetime and conductivity in Sn and Pb doped n-Si. Solid State Phenom. 205–206, 323 (2014).

E. Gaubas, E. Simoen, J. Vanhellemont. Carrier lifetime spectroscopy for defect characterization in semiconductor materials and devices. ECS J. Solid State Sci. 5, 3108 (2016). https://doi.org/10.1149/2.0201604jss

Y.-H. Lee, J.W. Corbett. EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes, Phys. Rev. B 13, 2653 (1976). https://doi.org/10.1103/PhysRevB.13.2653

M. Moll, H. Feick, E. Fretwurst, G. Lindstrom, C. Schutze. Comparison of defects produced by fast neutrons and 60Co-gammas in high-resistivity silicon detectors using deep-level transient spectroscopy, Nucl. Instrum. Meth. Phys. A 388, 335 (1997). https://doi.org/10.1016/S0168-9002(97)00003-X

K. Gill, G. Hall, B. MacEvoy. Bulk damage effects in irradiated silicon detectors due to clustered divacancies. J. Appl. Phys. 82, 126 (1997). https://doi.org/10.1063/1.365790

E. Monakhov, B. Avset, A. Hallen, B. Svensson. Formation of a double acceptor center during divacancy annealing in low-doped high-purity oxygenated Si. Phys. Rev. B 65, 233207 (2002). https://doi.org/10.1103/PhysRevB.65.233207

G. Alfieri, E. Monakhov, B. Avset, B. Svensson. Evidence for identification of the divacancy-oxygen center in Si. Phys. Rev. B 68, 233202 (2003). https://doi.org/10.1103/PhysRevB.68.233202

V. Markevich, A. Peaker, S. Lastovskii, L. Murin, J. Lindstrom. Defect reactions associated with divacancy elimination in silicon. J. Phys.: Condens. Matter 15, S2779 (2003). https://doi.org/10.1088/0953-8984/15/39/002

M. Mikelsen, E. Monakhov, G. Alfieri, B. Avset, B. Svensson. Kinetics of divacancy annealing and divacancy-oxygen formation in oxygen-enriched high-purity silicon. Phys. Rev. B 72, 195207 (2005). https://doi.org/10.1103/PhysRevB.72.195207

M.-A. Trauwaert, J. Vanhellemont, H. Maes, A.-M. Van Bavel, G. Langouche, P. Clauws. Low-temperature anneal of the divacancy in p-type silicon: A transformation from V2 to VxOy complexes? Appl. Phys. Lett. 66, 3056 (1995). https://doi.org/10.1063/1.114276

V. Markevich, A. Peaker, B. Hamilton, S. Lastovskii, L. Murin, J. Coutinho, V.J.B. Torres, L. Dobaczewski, B.G. Svensson. Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon. Phys. Status Solidi A 208, 568 (2011). https://doi.org/10.1002/pssa.201000265

N. Ganagona, B. Raeissi, L. Vines, E. Monakhov, B. Svensson. Formation of donor and acceptor states of the divacancy–oxygen centre in p-type Cz-silicon. J. Phys.: Condens. Matter 24, 435801 (2012). https://doi.org/10.1088/0953-8984/24/43/435801

V. Markevich, A. Peaker, B. Hamilton, S. Lastovskii, L. Murin. Donor levels of the divacancy-oxygen defect in silicon. J. Appl. Phys. 115, 012004 (2014). https://doi.org/10.1063/1.4837995

I. Pintilie, E. Fretwurst, G. Lindstrom, J. Stahl. Close to midgap trapping level in 60Co gamma irradiated silicon detectors. Appl. Phys. Lett. 81, 165 (2002). https://doi.org/10.1063/1.1490397

M. Kras'ko, A. Kraitchinskii, V. Neimash, A. Kolosiuk, L. Shpinar. On the nature of "negative" annealing of the nonequilibrium charge carrier lifetime in irradiated n-Si, Ukr. J. Phys. 52, 162 (2007).

V. Markevich, A. Peaker, S. Lastovskii, V. Gusakov, I. Medvedeva, L. Murin. Formation of radiation-induced defects in Si crystals irradiated with electrons at elevated temperatures. Solid State Phenom. 156–158, 299 (2010).

V. Neimash, V. Siratskii, M. Sosnin, V. Shakhovtsov, V. Shindich. The thermal donors influence on radiation defecting in silicon, Fiz. Tekh. Poluprovodn. 23, 250 (1989) (in Russian).

I. Kolkovskii, P. Lugakov, V. Shusha. Charge-carrier recombination in silicon irradiated with y-rays of different energies. Phys. Status Solidi A 83, 299 (1984). https://doi.org/10.1002/pssa.2210830133

M. Kras'ko, V. Neimash, A. Kraitchinskii, A. Kolosiuk, O. Kabaldin. Influence of A- and E-centers on the lifetime of nonequilibrium charge carriers in y-irradiated n-Si. Ukr. J. Phys. 53, 683 (2008).

A. Zubrilov, S. Koveshnikov, Effect of impurity composition of n-type Si on the radiation-induced defect formation and degradation of minority-charge-carrier lifetime under y-irradiation. Fiz. Tekh. Poluprovodn. 25, 1332 (1991) (in Russian).

M.-L. David, E. Simoen, C. Claeys, V. Neimash, M. Kras'ko, A. Kraitchinskii, V. Voytovych, A. Kabaldin, J.F. Barbot. On the effect of lead on irradiation induced defects in silicon. Solid State Phenom. 108–109, 373 (2005). https://doi.org/10.4028/www.scientific.net/SSP.108-109.373

P. Pellegrino, P. L’ev^eque, J. Lalita, A. Hall’e, B.G. Svensson. Annealing kinetics of vacancy-related defects in low-dose MeV self-ion-implanted n-type silicon, Phys. Rev. B 64, 195211 (2001). https://doi.org/10.1103/PhysRevB.64.195211

J. Coutinho, R. Jones, S. ¨ Oberg, P. Briddon. The formation, dissociation and electrical activity of divacancy-oxygen complexes in Si. Physica B 340–342, 523 (2003). https://doi.org/10.1016/j.physb.2003.09.143

M. Mikelsen, J. Bleka, J. Christensen, E. Monakhov, B. Svensson. Annealing of the divacancy-oxyge and vacancy-oxygen complexes in silicon. Phys. Rev. B 75, 155202 (2007). https://doi.org/10.1103/PhysRevB.75.155202

Опубліковано

2018-12-09

Як цитувати

Kras’ko, M. M., Kolosiuk, A. G., Voitovych, V. V., Povarchuk, V. Y., & Roguts’kyi, I. S. (2018). Вплив дефектів дивакансія-кисень на рекомбінаційні властивості n-Si після опромінення та наступного відпалу. Український фізичний журнал, 63(12), 1095. https://doi.org/10.15407/ujpe63.12.1095

Номер

Розділ

Напівпровідники і діелектрики

Статті цього автора (авторів), які найбільше читають