Сенсори ультрафіолетового випромінювання на основі твердих розчинів ZnxCd1 – xS
DOI:
https://doi.org/10.15407/ujpe64.4.308Ключові слова:
УФ сенсори, поверхнево-бар’єрнi структури, твердi розчини, варiзоннi шари, багатошаровi гетероструктури, енергетична зонна дiаграмаАнотація
Використання надтонкої (∼10 нм) стабiльної плiвки p-Cu1,8S в ролi прозорої складової поверхнево-бар’єрної структури, а також варiзонних шарiв (ВШ) дозволило отримати ефективнi напiвпровiдниковi сенсори на основi твердих розчинiв (ТР) Zn0,6Cd0,4S та Zn0,7Cd0,3S. В ролi пiдкладок для епiтаксiйного вирощування ТР використовуються шари n-CdS. Проблема одержання низькоомних полiкристалiчних шарiв ZnxCd1−xS, створення до них омiчних контактiв, а також узгодження ґраток ТР з матерiалом пiдкладки вирiшується шляхом використання промiжних варiзонних шарiв. На основi гетероструктури з використанням скляних фiльтрiв отриманi селективний сенсор УФ-А дiапазону (ТР Zn0,7Cd0,3S), а також сенсори, чутливiсть яких вiдповiдає пiгментацiйнiй областi сонячного випромiнювання (фiолетово-блакитна область). Побудованi енергетичнi зоннi дiаграми багатошарової гетероструктури, приведенi результати оже-спектроскопiчних дослiджень i дослiджень основних електричних i фотоелектричних властивостей сенсорiв.
Посилання
J.C. Carrano, T. Li, C.J. Eiting, R.D. Dupuis, J.C. Campbell. Very high-speed ultraviolet photodetectors fabricated on GaN. J. Electron. Mater. 28, 325 (1999). https://doi.org/10.1007/s11664-999-0035-9
E. Monroy, T. Palacios, O. Hainaut, F. Omn?es, F. Calle, J.-F. Hochedez. Assessment of GaN metal-semiconductor-metal photodiodes for high-energy ultraviolet photodetection. Appl. Phys. Lett. 80, 3198 (2002). https://doi.org/10.1063/1.1475362
R.V.L.N. Sridhar, M.V.H. Rao, K. Kalyani, K.V.S. Bhaskar, A. Chandran, M. Mahajan, A. Bhaskar Manja, G.M. Gouda, J.D.P.V. Tayaramma, P.R. Amudha, M.M. Kandpal, K.B. Pramod, S.G. Viswanath, L.V. Prasad, A.S. Laxmiprasad, P. Chakraborty, J.A. Kamalakar, G. Nagendra Rao, M. Viswanathan. Lyman alpha photometer: a far-ultraviolet sensor for the study of hydrogen isotope ratio in the Martian exosphere. Curr. Sci. 109, 1114 (2015). https://doi.org/10.18520/v109/i6/1114-1120
R. Pidcock, M. Srokosz, J. Allen, M. Hartman, S. Painter, M. Mowlem, D. Hydes, A. Martin. A novel integration of an ultraviolet nitrate sensor on board a towed vehicle for mapping open-ocean submesoscale nitrate variability. J. Atmosph. Ocean. Technol. 27, 1410 (2010). https://doi.org/10.1175/2010JTECHO780.1
Jae Hee Jung, Jung Eun Lee, Gwi-Nam Bae. Real-time fluorescence measurement of airborne bacterial particles using an aerosol fluorescence sensor with dual ultraviolet- and visible-fluorescence channels. Environm. Eng. Sci. 29, 987 (2012). https://doi.org/10.1089/ees.2011.0449
Chen Bin, Yang Yin-tang, Xie Xuan-rong, Wang Ning. Primary modeling and survey of 4H-SiC based metal-semiconductor-metal ultraviolet sensor with novel electrode structure. Appl. Mech. Mater. 128-129, 411 (2012). https://doi.org/10.4028/www.scientific.net/AMM.128-129.411
J. Theyirakumar, G. Gopir, B. Yatim, H. Sanusi, P.S.M. Mahmud, T.C. Hoe. Testing and calibration of an ultraviolet: A radiation sensor based on GaN photodiode. Sains Malays. 40, 21 (2011).
Y.R. Sipauba Carvalho da Silva, Y. Koda, S. Nasuno, R. Kuroda, S. Sugawa. An ultraviolet radiation sensor using differential spectral response of silicon photodiodes. In IEEE Sensors, Busan, South Korea, January 2015 (2015), p. 1. https://doi.org/10.1109/ICSENS.2015.7370656
Wang Wen-Bo, Gu Hang, He Xing-Li, Xuan Wei-Peng, Chen Jin-Kai, Wang Xiao-Zhi, Luo Ji-Kui. Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors. Chin. Phys. B 24, 057701 (2015). https://doi.org/10.1088/1674-1056/24/5/057701
Jian-Wei Hoon, Kah-Yoong Chan, Zi-Neng Ng, Teck-Yong Tou. Transparent ultraviolet sensors based on magnetron sputtered ZnO thin films. Adv. Mater. Res. 686, 79 (2013). https://doi.org/10.4028/www.scientific.net/AMR.686.79
Ki Jung Lee, Haekwan Oh, Minuk Jo, Keekeun Lee, Sang Sik Yang. An ultraviolet sensor using spin-coated ZnO nanoparticles based on surface acoustic waves. Microelectron. Eng. 111, 105 (2013). https://doi.org/10.1016/j.mee.2013.02.025
M.H. Mamat, N.N. Hafizah, M. Rusop, Fabrication of thin, dense and small-diameter zinc oxide nanorod array-based ultraviolet photoconductive sensors with high sensitivity by catalyst-free radio frequency magnetron sputtering. Mater. Lett. 93, 215 (2013). https://doi.org/10.1016/j.matlet.2012.11.105
K.S. Ranjith, R.T. Rajendra Kumar, Facile construction of vertically aligned ZnO nanorod/PEDOT:PSS hybrid heterojunction-based ultraviolet light sensors: Efficient performance and mechanism. Nanotechnology 27, 095304 (2016). https://doi.org/10.1088/0957-4484/27/9/095304
M.H. Mamat, N.D.M. Sin, I. Saurdi, N.N. Hafizah, M.F. Malek, M.N. Asiah, Z. Khusaimi, Z. Habibah, N. Nafarizal, M. Rusop. Performance of ultraviolet photoconductive sensor based on aluminium-doped zinc oxide nanorod-nanoflake network thin film using aluminium contacts. Adv. Mater. Res. 832, 298 (2014). https://doi.org/10.4028/www.scientific.net/AMR.832.298
M.H. Mamat, M.F. Malek, N.N. Hafizah, Z. Khusaimi, M.Z. Musa, M. Rusop, Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times, Sensor. Actuat. B 195, 609 (2014). https://doi.org/10.1016/j.snb.2014.01.082
Yung-Yu Chen, Cheng-Hsiu Ho, Tsung-Tsong Wu. Surface acoustic wave ultraviolet sensors based on ZnO nanorods. In Proceedings of the 9th International Conference on Sensing Technology (ICST), Auckland, New Zealand (2015), p. 406. https://doi.org/10.1109/ICSensT.2015.7438431
Yi Liu, Liang Xi Pang, Jing Liang, Man Kit Cheng, Jia Jun Liang, Jun Shu Chen, Ying Hoi Lai, Iam Keong Sou. A compact solid-state uv flame sensing system based on wide-gap II-VI thin film materials. IEEE Trans. Ind. Electron. 65 No. 3, 2737 (2018). https://doi.org/10.1109/TIE.2017.2740842
Xiaosheng Fang, Y. Bando, Meiyong Liao, Tianyou Zhai, U.K. Gautam, Liang Li, Y. Koide, D. Golberg. An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Funct. Mater. 20, 500 (2010). https://doi.org/10.1002/adfm.200901878
Yu.N. Bobrenko, A.M. Pavelets, S.Yu. Pavelets, V.M. Tkachenko. Short-wave photosensitivity of surface-barrier structures based on degenerate semiconductor-semiconductor junctions. Pis'ma Zh. Tekhn. Fiz. 20, No. 12, 9 (1994) (in Russian).
Yu.N. Bobrenko, S.Yu. Pavelets, A.M. Pavelets, M.P. Kiselyuk, N.V. Yaroshenko. Efficient photoelectric converters of ultraviolet radiation based on ZnS and CdS with low-resistivity surface layers. Semiconductors 44, 1080 (2010). https://doi.org/10.1134/S1063782610080221
S.Yu. Pavelets,Yu.N. Bobrenko,T.V. Semikina, K.B. Krulikovska, G.I. Sheremetova, B.S. Atdaev, M.V. Yaroshenko. Effective policrystaline sensor of ultraviolet radiation. Semicond. Phys. Quant. Electron. Optoelectron. 20, 335 (2017).
Yu.N. Bobrenko, S.Yu. Pavelets, A.M. Pavelets. Effective photoelectric converters of ultraviolet radiation with graded-gap ZnS-based layers. Semiconductors 43, 801 (2009). https://doi.org/10.1134/S1063782609060219
Yu.N. Bobrenko, S.Yu. Pavelets, A.M. Pavelets, T.V. Semikina, N.V. Yaroshenko. Surface-barrier photoconverters with graded-gap layers in the space-charge region. Semiconductors 49, 519 (2015). https://doi.org/10.1134/S1063782615040089
I.V. Sedova, T.V. L'vova, V.P. Ulin, S.V. Sorokin, A.V. Ankudinov, V.L. Berkovits, S.V. Ivanov, P.S. Kop'ev. Sulfide passivating coatings on GaAs(100) surface under conditions of MBE growth of ?II ? VI?/GaAs. Semiconductors 36, 54 (2002). https://doi.org/10.1134/1.1434514
K. Ando, H. Ishikura,Y. Fukunaga, T. Kubota, H. Maeta, T. Abe, H. Kasada. Highly efficient blue-ultraviolet photodetectors basedon II-VI wide-bandgap compound semiconductors. Phys. Status Solidi B 229, 1065 (2002). https://doi.org/10.1002/1521-3951(200201)229:2<1065::AID-PSSB1065>3.0.CO;2-U
S.V. Averin, P.I. Kuznetsov, V.A. Zhitov, N.V. Alkeev, V.M. Kotov, L.Yu. Zakharov, N.B. Gladysheva. MPM photodiodes based on wide-gap heterostructures ZnCdS/GaP. Zh. Tekhn. Fiz. 82, No. 11, 49 (2012).
V.A. Gurtov. Solid State Electronics: A Tutotial (Tekhnosfera, 2008) (in Russian) [ISBN: 978-5-94836-187-1].
Physics of AII BVI compounds. Edited by A.N. Georgobiani, M.K. Sheikman (Nauka, 1986) (in Russian).
G.P. Peka, V.F. Kovalenko, A.N. Smolyar. Variband Semiconductors (Vyshcha Shkola, 1989) (in Russian).
A.G. Milnes, D.L. Feucht. Heterojunctions and Metal-Semiconductor Junctions (Academic Press, 1972). https://doi.org/10.1016/B978-0-12-498050-1.50007-6
Yu.N. Bobrenko, S.Yu. Pavelets, A.M. Pavelets, N.V. Yaroshenko. Photoelectric converters with graded-gap layers based on ZnSe. Semiconductors 47, 1372 (2013). https://doi.org/10.1134/S1063782613100047
O.N. Tufle, E.L. Stelzer. Growth and properties of Hg1?xCdxTe epitaxial layers. J. Appl. Phys. 40, 4559 (1969). https://doi.org/10.1063/1.1657232
S. Adachi. Properties of Group-IV, III-V and II-VI Semiconductors (John Wiley and Sons, 2005). https://doi.org/10.1002/0470090340
D. Thomas, K.A. Vijayalakshmi, K.K. Sadasivuni, A. Thomas, D. Ponnamma, J.-J. Cabibihan. A fast responsive ultraviolet sensor from mSILAR-processed Sn-ZnO. J. Electron. Mater. 46, 6480 (2017). https://doi.org/10.1007/s11664-017-5680-9
Chin-Wei Lin, Kuang-Lu Huang, Kai-Wei Chang, Jan-Han Chen, Kuen-Lin Chen, Chiu-Hsien Wu. Ultraviolet photodetector and gas sensor based on amorphous In-Ga-Zn-O film. Thin Solid Films 618, 73 (2016). https://doi.org/10.1016/j.tsf.2016.05.013
T.V. Blank, Yu.A. Gol'dberg. Semiconductor photoelectric converters for the ultraviolet region of the spectrum. Semiconductors 37, 999 (2003). https://doi.org/10.1134/1.1610111
K. Hiramatsu, A. Motogaito. GaN-based Schottky barrier photodetectors from near ultraviolet to vacuum ultraviolet (360-50 nm). Phys. Status Solidi A 195, 496 (2003). https://doi.org/10.1002/pssa.200306142
Li Yu-Ren,Wan Chung-Yun, Chang Chia-Tsung, Tsai Wan-Lin, Huang Yu-Chih, Wang Kuang-Yu, Yang Po-Yu, Cheng Huang-Chung. Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure. Vacuum 118, 48 (2015). https://doi.org/10.1016/j.vacuum.2015.01.018
S.Yu. Pavelets, G.A. Fedorus. Determination of the band break in Cu2S-CdS heterojunction. Fiz. Tekh. Polupro- vodn. 9, 1164 (1975) (in Russian).
R.V. Kantariya, S.Yu. Pavelets. Energy band diagram of p-Cu2?xS-n-CdS heterojunctions. Fiz. Tekh. Poluprovodn. 12,1214 (1978) (in Russian).
S.Yu. Pavelets, T.M. Svanidze, V.P. Tarasenko. Specific features of current flow through degenerate semiconductor-semiconductor heterojunctions. Ukr. Fiz. Zh. 18, 581 (1983) (in Russian).
S.Yu. Pavelets, T.V. Svanidze, V.P. Tarasenko. Reverse current in degenerate semiconductor-semiconductor heterojunctions. Fiz. Tekh. Poluprovodn. 17, 1330 (1983) (in Russian).
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.