Скло з боратів молібдену і гадолінію, допійоване Sm3+, як активне середовище лазера з емісією помаранчевого кольору

Автор(и)

  • R. Rajaramakrishna Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University
  • Y. Ruangtawee Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University
  • J. Kaewkhao Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University

DOI:

https://doi.org/10.15407/ujpe63.8.721

Ключові слова:

trivalent samarium, molecular structure, borate glasses, optical properties, fluorescence spectrum, CIE chromaticity

Анотація

Проаналiзовано спектри оптичного поглинання i емiсiї при кiмнатнiй температурi скла з боратiв молiбдену i гадолiнiю (МГБ), допiйованих Sm3+ з молярним складом 25MoO3-20Gd2O3–(55 − x)B2O3−xSm2O3 (x = 0,05, 0,1, 0,5, 1,0, 2,0 мол.%). Експериментальнi значення сил осциляторiв смуг поглинання використанi для визначення параметрiв Джадда–Офелта (Дж–О). Записанi спектри флуоресценцiї при збудженнi зразкiв на 402 нм. На основi Дж–О параметрiв i даних з люмiнесценцiї, знайденi ймовiрностi радiацiйних переходiв (AR), коефiцiєнт розпаду (BR) i перетини стимульованого випромiнювання (Oe). Кривi розпаду переходу 4G5/2–6H7/2 мають неекспоненцiальну залежнiсть для
всiх концентрацiй. Концентрацiйнi гасiння вiдповiдають переносу енергiї мiж Sm3+ iонами шляхом крос-релаксацiї. Визначено 4G5/2 рiвень i вимiрянi його вiдноснi квантовi ефективностi. Спостерiгалося iнтенсивне червонувато-оранжеве випромiнювання вiдповiдне 4G5/2−6H7/2 переходу при збудженнi на 487 нм. Виходячи з величин радiацiйних параметрiв, зроблено висновок про те, що 1,0-мол.% Sm3+-допiйоване МГБ скло може бути використано як активне лазерне середовище з довжиною хвилi випромiнювання 599 нм. Аналiз неекспоненцiальних кривих розпаду в моделi Iнокутi–Хираяма показує, що перенесення енергiї мiж Sm3+ iонами має дипольний характер. Отримано, що квантова ефективнiсть для 4G5/2 рiвня МГБ Sm10 скла дорiвнює 67%. Колiрна температура для цих стекол
вiдповiдно до даних МКВ (Мiжнародна Комiсiя з висвiтлення) дорiвнює ∼1620 K для оранжевого випромiнювання при збудженнi на 402 нм.

Посилання

<ol>
<li>R.G. Gossink. Thesis, Eindhoven O971. Philips Res. Rep. Suppl. No. 3. (1971).
</li>
<li>R. Iodanova, V. Dimitrov, Y. Dimitriev, S. Kassabov, D. Kissuski. Glass formation and structure in the system MoO3–Bi2O3–Fe2O3. J. Non-Cryst. Solids 231, 227 (1998).
<a href="https://doi.org/10.1016/S0022-3093(98)00456-6">https://doi.org/10.1016/S0022-3093(98)00456-6</a>
</li>
<li>Y. Dimitriev, E. Kashchieva, R. Iordanova, G. Tyuliev. Glass formation and microheterogeneous structure in the system B2O3–V2O5–MoO3. Phys. Chem Glasses 44, 155 (2003).
</li>
<li>M. Milanova, R. Iordanova, Y. Dimitriev, D. Klissurski. Glass formation in the MoO3Bi2O3–PbO system. J. Mat. Sci. Lett. 39, 5591 (2004).
<a href="https://doi.org/10.1023/B:JMSC.0000039296.40866.7c">https://doi.org/10.1023/B:JMSC.0000039296.40866.7c</a>
</li>
<li>P. Syam Prasad, B.V. Raghavaiah, R. Balaji Rao, N. Veeraiah. Dielectric dispersion in the PbO–MoO3–B2O3 glass system. Solid State Commun. 235, 132 (2004).
<a href="https://doi.org/10.1016/j.ssc.2004.07.042">https://doi.org/10.1016/j.ssc.2004.07.042</a>
</li>
<li>B.B. Das, R. Ambika. EPR and IR studies on the local structure of 80MoO3–20B2O3 glass. Chem. Phys. Lett. 370, 670 (2003).
<a href="https://doi.org/10.1016/S0009-2614(03)00077-0">https://doi.org/10.1016/S0009-2614(03)00077-0</a>
</li>
<li>L. Bih, E.L. Omari, J.M. Reau, A. Yacoubi, A. Nadiri, M. Haddad. Electrical properties of glasses in the Na2O–MoO3–P2O5 system. Mater. Lett. 50, 308 (2001).
<a href="https://doi.org/10.1016/S0167-577X(01)00245-2">https://doi.org/10.1016/S0167-577X(01)00245-2</a>
</li>
<li>M. Srinivasa Reddy, V.L.N. Sridhar Raja, N. Veeraiah. Molybdenum ion as a structural probe in PbO–Sb2O3–B2O3 glass system by means of dielectric and spectroscopic investigations. EPJ Appl. Phys. 37, 203 (2007).
<a href="https://doi.org/10.1051/epjap:2007022">https://doi.org/10.1051/epjap:2007022</a>
</li>
<li>G. Little Flower, G. Sahaya Baskaran, M. Srinivasa Reddy, N. Veeraiah. The structural investigations of PbO–P2O5–Sb2O3 glasses with MoO3 as additive by means of dielectric, spectroscopic and magnetic studies. Physica B 393, 61 (2007).
<a href="https://doi.org/10.1016/j.physb.2006.12.070">https://doi.org/10.1016/j.physb.2006.12.070</a>
</li>
<li> G. Srinivasarao, N. Veeraiah. Characterization and physical properties of PbO–As2O3 glasses containing molybdenum ions. J. Solid State Chem. 166, 104 (2002).
<a href="https://doi.org/10.1006/jssc.2002.9565">https://doi.org/10.1006/jssc.2002.9565</a>
</li>
<li> C.K. Jayasankar, P. Babu. Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses. J. Alloys Compd. 307, 82 (2000).
<a href="https://doi.org/10.1016/S0925-8388(00)00888-4">https://doi.org/10.1016/S0925-8388(00)00888-4</a>
</li>
<li> P. Subbalakshmi, B.V. Raghavaiah, R. Balaji Rao, N. Veeraiah. Spectroscopic properties of Mo–Wo3–P2O5: Ho3+ glasses. EPJ Appl. Phys. (Fr.) 26, 169 (2004).
<a href="https://doi.org/10.1051/epjap:2004035">https://doi.org/10.1051/epjap:2004035</a>
</li>
<li> M. El-Hofy, I.Z. Hager. Ionic Conductivity in MoO3–BaF2–AgI–LiF Glasses. Phys. Status Solidi A 182, 697 (2000).
<a href="https://doi.org/10.1002/1521-396X(200012)182:2<697::AID-PSSA697>3.0.CO;2-N">https://doi.org/10.1002/1521-396X(200012)182:2<697::AID-PSSA697>3.0.CO;2-N</a>
</li>
<li> J. Kaewkhao, N. Wantana, S. Kaewjaeng, S. Kothan, H.J. Kim. Luminescence characteristics of Dy3+ doped Gd2O3–CaO–SiO2–B2O3 scintillating glasses. J. Rare Earths 34 (6), 583 (2000).
<a href="https://doi.org/10.1016/S1002-0721(16)60065-0">https://doi.org/10.1016/S1002-0721(16)60065-0</a>
</li>
<li> Chunmei Tang, Shuang Liu, Liwan Liu, Dan Ping Chen. Luminescence properties of Gd3+-doped borosilicate scintillating glass. J. Lumin. 160, 317 (2015).
<a href="https://doi.org/10.1016/j.jlumin.2014.12.033">https://doi.org/10.1016/j.jlumin.2014.12.033</a>
</li>
<li> Z. Onderisinova, M. Kucera, M. Hanus, M. Nikl. Temperature-dependent nonradiative energy transfer from Gd3+ to Ce3+ ions in co-doped LuAG: Ce, Gd garnet scintillators. J. Lumin. 167, 106 (2015).
<a href="https://doi.org/10.1016/j.jlumin.2015.06.014">https://doi.org/10.1016/j.jlumin.2015.06.014</a>
</li>
<li> Xin-Yuan Sun, Da-Guo Jiang, Wen-Feng Wang, Chun-Yan Cao, Yu-Nong Li, Guo-Tai Zhen, Hong Wang, Xin-Xin Yang, Hao-Hong Chen, Zhi-Jun Zhang, Jing-Tai Zhao. Luminescence properties of B2O3–GeO2–Gd2O3 scintillating glass doped with rare-earth and transition-metal ions. Nucl. Instrum. Methods A 716, 90 (2013).
<a href="https://doi.org/10.1016/j.nima.2013.03.036">https://doi.org/10.1016/j.nima.2013.03.036</a>
</li>
<li> M.K. Halimah, W.M. Daud, H.A.A. Sidek. ???? J. App. Sci. 2340, 1546 (2005).
</li>
<li> M.R. Raddy, V.R. Kumar, N. Veeraiah. Effect of chromium impurity on dielectric relaxation effects of ZnF2–PbO–TeO2 glasses. Indian J. Pure and Appl. Phys. 33, 48 (1995).
</li>
<li> B. Eraiah. Optical properties of samarium doped zinctellurite glasses. J. Indian Acad. of Sci. 29 (4), 375 (2006).
</li>
<li> Pedro Damas, Joa Coelho, Graham Hungerford, N. Sooraj Hussain. Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides. Materials Research Bulletin 47, 3489 (2012).
<a href="https://doi.org/10.1016/j.materresbull.2012.06.071">https://doi.org/10.1016/j.materresbull.2012.06.071</a>
</li>
<li> M. Subhadra, P. Kistaiah. Effect of Bi2O3 content on physical and optical properties of 15Li2O–15K2O–xBi2O3–(65 ? x) B2O3: 5V2O5 glass system. Physica B 406, 1501 (2011).
<a href="https://doi.org/10.1016/j.physb.2011.01.057">https://doi.org/10.1016/j.physb.2011.01.057</a>
</li>
<li> Y.B. Saddeek, L.A.E. Latif. Effect of TeO2 on the elastic moduli of sodium borate glasses. Physica B 348, 475 (2004).
<a href="https://doi.org/10.1016/j.physb.2004.02.001">https://doi.org/10.1016/j.physb.2004.02.001</a>
</li>
<li> E.I. Kamitsos. Infrared studies of borate glasses. Phys. Chem. Glasses 44 (2), 79 (2003).
</li>
<li> A. Mogus-Milankovic, A. Santic, A. Gajovic, D.E. Day. Spectroscopic investigation of MoO3–Fe2O3–P2O5 and SrO–Fe2O3–P2O5 glasses. Part I. J. Non-Cryst. Solids 76, 325 (2003).
<a href="https://doi.org/10.1016/S0022-3093(03)00362-4">https://doi.org/10.1016/S0022-3093(03)00362-4</a>
</li>
<li> M. Rada, S. Rada, P. Pascuta, E. Culea. Structural properties of molybdenum-lead-borate glasses. Spectrochimica Acta Part A 77, 832 (2010).
<a href="https://doi.org/10.1016/j.saa.2010.08.014">https://doi.org/10.1016/j.saa.2010.08.014</a>
</li>
<li> M.S. Reddy, V.L.N. Sridhar Raja, N. Veeraiah. Molybdenum ion as a structural probe in PbO–Sb2O3–B2O3 glass system by means of dielectric and spectroscopic investigations. EPJ Appl. Phys. 37 (2), 203 (2007).
<a href="https://doi.org/10.1051/epjap:2007022">https://doi.org/10.1051/epjap:2007022</a>
</li>
<li> U. Selveraj, K.J. Rao. Role of lead in lead phosphomolybdate glasses and a model of structural units. J. Non-Cryst. Solids 104, 300 (1988).
<a href="https://doi.org/10.1016/0022-3093(88)90401-2">https://doi.org/10.1016/0022-3093(88)90401-2</a>
</li>
<li> K. Koteswara Rao, M. Vithala, D. Ravinder. Preparation, infrared and magnetic susceptibility studies of LnB3O6 (Ln =Gd, Eu and Sm). J. Magnetism and Magnetic Materials 253, 65 (2002).
<a href="https://doi.org/10.1016/S0304-8853(02)00416-X">https://doi.org/10.1016/S0304-8853(02)00416-X</a>
</li>
<li> Okan Icten, Dursun Ali Kose, Birgul Zumreoglu-Karan. Fabrication and characterization of magnetite-gadolinium borate nanocomposites. J. Alloys and Compounds 726, 437 (2017).
<a href="https://doi.org/10.1016/j.jallcom.2017.07.277">https://doi.org/10.1016/j.jallcom.2017.07.277</a>
</li>
<li> B.R. Judd. Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962).
<a href="https://doi.org/10.1103/PhysRev.127.750">https://doi.org/10.1103/PhysRev.127.750</a>
</li>
<li> G.S. Ofelt. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962).
<a href="https://doi.org/10.1063/1.1701366">https://doi.org/10.1063/1.1701366</a>
</li>
<li> C.K. Jayasankar, E. Rukmini. Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses. Opt. Mater. 8, 193 (1997).
<a href="https://doi.org/10.1016/S0925-3467(97)00021-9">https://doi.org/10.1016/S0925-3467(97)00021-9</a>
</li>
<li> R. Rajaramakrishna, B. Knorr, V. Dierolf, R.V. Anavekar, H. Jain. Spectroscopic properties of Sm3+-doped lanthanum borogermanate glass. J. Luminescence 156, 192 (2014).
<a href="https://doi.org/10.1016/j.jlumin.2014.07.021">https://doi.org/10.1016/j.jlumin.2014.07.021</a>
</li>
<li> B.C. Jamalaiah, J. Suresh Kumar, A. Mohan Babu, T. Suhasini, L. Rama Moorthy. Photoluminescence properties of Sm3+ in LBTAF glasses. J. Luminescence 129, 363 (2009).
<a href="https://doi.org/10.1016/j.jlumin.2008.11.001">https://doi.org/10.1016/j.jlumin.2008.11.001</a>
</li>
<li> L. Boehm, R. Reisfeld, N. Spector. Optical transitions of Sm3+ in oxide glasses. J. Solid State Chem. 28, 75 (1979).
<a href="https://doi.org/10.1016/0022-4596(79)90060-4">https://doi.org/10.1016/0022-4596(79)90060-4</a>
</li>
<li> H. Ahrens, M. Wollenhaupt, P. Frobel, J. Lin, K. Barner, G.S. Sun, R. Braunstein. Determination of the Judd––Ofelt parameters of the optical transitions of Sm3+ in lithiumborate tungstate glasses. J. Lumin. 82, 177 (1999).
<a href="https://doi.org/10.1016/S0022-2313(99)00051-4">https://doi.org/10.1016/S0022-2313(99)00051-4</a>
</li>
<li> J. Mc Dougall, D.B. Hollis, M.J.P. Payne. Judd–Ofelt parameters of rare-earth ions in ZBLALi, ZBLAN and ZBLAK fluoride glass. Phys. Chem. Glasses 35, 258 (1994).
</li>
<li> S. Tanabe, T. Hanada, T. Ohayagi, N. Soga. Correlation between 151Eu Mossbauer isomer shift and Judd–Ofelt ?6 parameters of Nd3+ ions in phosphate and silicate laser. Phys. Rev. B 48, 10591 (1993).
<a href="https://doi.org/10.1103/PhysRevB.48.10591">https://doi.org/10.1103/PhysRevB.48.10591</a>
</li>
<li> H. Takabe, Y. Nagano, K. Morinaga. Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses. J. Am. Ceram. Soc. 77, 2132 (1994).
<a href="https://doi.org/10.1111/j.1151-2916.1994.tb07108.x">https://doi.org/10.1111/j.1151-2916.1994.tb07108.x</a>
</li>
<li> S. Tanabe, T. Ohayagi, N. Soga, T. Hanada. Compositional dependence of Judd–Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Phys. Rev. B 46, 3305 (1992).
<a href="https://doi.org/10.1103/PhysRevB.46.3305">https://doi.org/10.1103/PhysRevB.46.3305</a>
</li>
<li> M. Jayasimhadri, L.R.Moorthy, S.A. Saleem,R.V.S.S.N.Ravi Kumar. Spectroscopic characteristics of Sm3+-doped alkali fluorophosphate glasses Spectrochim. Acta A 64, 939 (2006).
<a href="https://doi.org/10.1016/j.saa.2005.09.001">https://doi.org/10.1016/j.saa.2005.09.001</a>
</li>
<li> V. Venkatramu, P. Babu, C.K. Jayasankar, T. Tr?oster, W. Sievers, G. Wortmann. Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses. Opt. Mater. 29, 1429 (2007).
<a href="https://doi.org/10.1016/j.optmat.2006.06.011">https://doi.org/10.1016/j.optmat.2006.06.011</a>
</li>
<li> R. Van Deun, K. Binnemans, C. Gorller Walrand. Spectroscopic properties of trivalent samarium ions in glasses. SPIE 3622, 175 (1999).
</li>
<li> C.K. Jayasankar, P. Babu. Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses. J. Alloys Compd. 307, 82 (2000).
<a href="https://doi.org/10.1016/S0925-8388(00)00888-4">https://doi.org/10.1016/S0925-8388(00)00888-4</a>
</li>
<li> M.B. Saisudha, J. Ramakrishna. Optical absorption of Nd3+, Sm3+ and Dy3+ in bismuth borate glasses with large radiative transition probabilities. Opt. Mater. 18, (2002) 403 (2002).
</li>
<li> F. Lahoz, I.R. Martin, J. Mendez-Ramos, P. Nunez. Dopant distribution in a Tm3+–Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study. J. Chem. Phys. 120, 6180 (2004).
<a href="https://doi.org/10.1063/1.1652016">https://doi.org/10.1063/1.1652016</a>
</li>
<li> C. Gorller-Walrand, K. Binnemans. Handbook on the Physics and Chemistry of Rare Earths. Edited by K.A. Gschneidner, jr., L. Eyring(North-Holland, 1998), Vol. 25, Chap. 167.
</li>
<li> V.D. Rodriguez, I.R. Martin, R. Alcalae, R. Cases. Optical properties and cross relaxation among Sm3+ ions in fluorzincate glasses. J. Lumin. 54, 231 (1992).
<a href="https://doi.org/10.1016/0022-2313(92)90070-P">https://doi.org/10.1016/0022-2313(92)90070-P</a>
</li>
<li> R. Praveena, V. Venkatramu, P. Babu, C.K. Jayashankar. Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO–Nb2O5 glasses. Physica B 403, 3527 (2008).
<a href="https://doi.org/10.1016/j.physb.2008.05.027">https://doi.org/10.1016/j.physb.2008.05.027</a>
</li>
<li> M. Inokuti, F. Hirayama. Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43, 1978 (1965).
<a href="https://doi.org/10.1063/1.1697063">https://doi.org/10.1063/1.1697063</a>
</li>
<li> P. Nachimuthu, R. Jagannathan, V. Nirmal Kumar, D. Narayana Rao. Absorption and emission spectral studies of Sm3+ and Dy3+ ions in PbO–PbF2 glasses. J. Non-Cryst. Solids 217, 215 (1997).
<a href="https://doi.org/10.1016/S0022-3093(97)00151-8">https://doi.org/10.1016/S0022-3093(97)00151-8</a>
</li>
<li> Eun-Jin Cho, M. Jayasimhadri, Ki-Wan Jang, Gon Kim, Ho-Sueb Lee. Optical spectroscopy and luminescence properties of Sm3+-doped lead-germanate glasses. J. Korean Phys. Soc. 52, 599 (2008).
<a href="https://doi.org/10.3938/jkps.52.599">https://doi.org/10.3938/jkps.52.599</a>
</li>
<li> L. Mishra, A. Sharma, A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B.V. Ratman, K. Jang, A.S. Rao, R.K. Sinha. White light emission and color tunability of dysprosium doped barium silicate glasses. J. Lumin. 169, 121 (2016).
<a href="https://doi.org/10.1016/j.jlumin.2015.08.063">https://doi.org/10.1016/j.jlumin.2015.08.063</a>
</li>
<li> S.N. Rasool, L.R. Moorthy, C.K. Jayasankar. Optical and luminescence properties of Dy3+ ions in phosphate based glasses. Solid State Sci. 22, 89 (2013).
<a href="https://doi.org/10.1016/j.solidstatesciences.2013.05.013">https://doi.org/10.1016/j.solidstatesciences.2013.05.013</a></li>

Downloads

Опубліковано

2018-09-07

Як цитувати

Rajaramakrishna, R., Ruangtawee, Y., & Kaewkhao, J. (2018). Скло з боратів молібдену і гадолінію, допійоване Sm3+, як активне середовище лазера з емісією помаранчевого кольору. Український фізичний журнал, 63(8), 721. https://doi.org/10.15407/ujpe63.8.721

Номер

Розділ

Оптика, атоми і молекули