Оптимальні закономірності нормального розподілу з точки зору оцінки статистики вибірки результатів фізичного експерименту

Автор(и)

  • P. Kosobutskyy National University “Lviv Polytechnic”

DOI:

https://doi.org/10.15407/ujpe63.7.645

Ключові слова:

нормальний розподiл, математичне сподiвання, дисперсiя, випадковi величини

Анотація

На пiдставi аналiзу лiтературних джерел синтезованi базовi ймовiрнiснi i принципи формування нормального розподiлу випадкових розсiянь значень фiзичних величин в умовах незалежних випадкових дiй на фiзичну систему. Зроблений наголос на комплексному пiдходi ймовiрнiсно-статистичного аналiзу вибiрки результатiв експериментальних вимiрювань.

Посилання

<ol>
<li>G. Bohm, G. Zech. Introduction to Statistics and Data Analysis for Physicists (Deutsches Electronen-Synchrotron, 2010).
</li>
<li>J.K. Patel, C.B. Read. Handbook of the Normal Distribution (Dekker, 1982) [ISBN: 0-8247-1541-1].
</li>
<li>D.S. Sivia, J. Skilling. Data Analysis: A Bayesian Tutorial (Oxford Univ. Press, 2006) [ISBN: 978-0-19-856831-5].
</li>
<li>M.V. Fock. Resolution of complex spectra into separate bands using theAlentsev method. Trudy Fiz. Inst. Akad. Nauk SSSR 63, 3 (1972) (in Russian).
</li>
<li>A.S. Gusev. Probabilistic Methods in the Mechanics of Machines and Structures (Moscow State Technical University, 2009) (in Russian) [ISBN: 978-5-7038-3160-1].
</li>
<li>E.Wichmann. Quantum Physics. Berkeley Physics Course (McGraw-Hill, 2010), Vol. 4 [ISBN: 0070048614].
</li>
<li>F. Reif. Fundamentals Statistics and Thermal Physics (Waveland Press, 1965) [ISBN: 1-57766-612-7].
</li>
<li>http://www.d.umn.edu/?psiders/courses/chem5650/gaussviewtutorial /tutorial.html.
</li>
<li>V.M. Zolotarev. One-Dimensional Stable Distributions (Amer. Math. Soc., 1986).
</li>
<li> P.V. Korolenko, M.S. Maganova. Fundamentals of Statistical Methods in Optics (Universitetskaya Kniga, 2010) (in Russian) [ISBN: 978-5-91304-126-5].
</li>
<li> F. Bardou, J.-Ph. Bouchaud, A. Aspect, C. Cohen-Tannoudji. L’evy Statistics and Laser Cooling. How Rare Events Bring Atoms to Rest (Cambridge Univ. Press, 2001).
<a href="https://doi.org/10.1017/CBO9780511755668">https://doi.org/10.1017/CBO9780511755668</a>
</li>
<li> O.N. Maslov. Stable Distributions and Their Application in Radio Engineering (Radio i Svyaz, 1994) (in Russian) [ISBN: 5-256-01187-1].
</li>
<li> G. Samorodnitsky, M.S. Taqqu. Stable Non-Gaussian Random Processes (Chapman and Hall, 1994).
</li>
<li> S. Holmes. Sums of Random Variables: Statistics 116 (Stanford University, 1998).
</li>
<li> D. Titterington, A. Smith, U. Makov. Statistical Analysis of Finite Mixture Distributions (Wiley, 1985) [ISBN: 0-471-90763-4].
</li>
<li> N.A. Carreira-Perpi?n’an. Mode-finding for mixture of Gaussian distributions. IEEE Trans. Pattern Analys. Mach. Intell. 22, 1318 (2000).
<a href="https://doi.org/10.1109/34.888716">https://doi.org/10.1109/34.888716</a>
</li>
<li> Ya.A. Fomin, G.R. Tarlovskii. Statistical Theory of. Pattern Recognition (Radio i Svyaz, 1986) (in Russian).
</li>
<li> J.A. Hartigan. Distribution Problems in Clustering. In Classification and Clustering, edited by J. Van Ryzin (Academic Press, (1977), p. 45.
<a href="https://doi.org/10.1016/B978-0-12-714250-0.50007-3">https://doi.org/10.1016/B978-0-12-714250-0.50007-3</a>
</li>
<li> N.N. Aprausheva, I.A. Gorlach, A.A. Zhelnin, S.V. Sorokin. An experiment on automated statistical recognition of clouds. J. Comput. Math. Math. Phys. 38, 1715 (1998).
</li>
<li> M. Podrygalo, O. Isakova, A. Korobko. A new way to evaluate the coincidence of the results of theoretical and experimental studies Metrolog. Prylady 5, 48 (2017) (in Ukrainian).
</li>
<li> D.Z. Shmatko, O.V. Kochneva. Calculation of the probability of defect determination in pieces by non-destructive control. Matematych. Model. No. 1, 51 (2017) (in Ukrainian).
</li>
<li> P. Kosobutskyy. On the simulation of the mathematical expectation and variance of samples for Gaussian-distributed random variables. Ukr. Fiz. Zh. 61, 827 (2017) (in Ukrainian).
<a href="https://doi.org/10.15407/ujpe62.09.0827">https://doi.org/10.15407/ujpe62.09.0827</a>
</li>
<li> J.R. Stedinger, R.M. Vogel, E. Foufoula-Georgiou. Frequency anlysis of extreme events. In Handbook of Applied Hydrology, Part 3, edited by D. Maidment (McGraw-Hill, 1993), ch. 18 [ISBN: 978-0-07-171177-7].
</li>
<li> A. Hald. Maximum likelihood estimation of the parameters of a normal distribution which is truncated at a known point. Scand. Actuar. J. No. 1, 119 (1949).
<a href="https://doi.org/10.1080/03461238.1949.10419767">https://doi.org/10.1080/03461238.1949.10419767</a>
</li>
<li> B. Gnedenko, I. Ushakov. Probabilistic Reliability Engineering (Wiley Interscience, 1995) [ISBN: 0-471-30502-2].
<a href="https://doi.org/10.1002/9780470172421">https://doi.org/10.1002/9780470172421</a>
</li>
<li> V.R. Matvievsky. Reliability of Engineering Systems (MGIEM, 2002) (in Russian) [ISBN: 5-230-22198-4].
</li>
<li> A. O'Connor, M. Modarres, A. Mosleh. Probability Distributions Used in Reliability Engineering (CRE University of Maryland, 2016) [ISBN: 978-0-9966468].
</li>
<li> J. Xinzhang, L. Tao. An empirical formula for yield estimation from singly truncated performance data of qualified semiconductor devices. J. Semicond. 33, 125008 (2012).
<a href="https://doi.org/10.1088/1674-4926/33/12/125008">https://doi.org/10.1088/1674-4926/33/12/125008</a>
</li>
<li> K. Gu, X. Jia, H. You, T. Liang. The yield estimation of semiconductor products based on truncated samples. Int. J. Metrol. Qual. Eng. 4, 215 (2013).
<a href="https://doi.org/10.1051/ijmqe/2013050">https://doi.org/10.1051/ijmqe/2013050</a>
</li>
<li> A. Einstein. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann. der Phys. 17, 549 (1905).
<a href="https://doi.org/10.1002/andp.19053220806">https://doi.org/10.1002/andp.19053220806</a>
</li>
<li> A. Einstein, M. Smoluchowski. Brownian Motion. Collection of Papers (ONTI-GROTL, 1936) (in Russian).
</li>
<li> H. Risken, T. Frank. The Fokker–Planck Equation: Methods of Solutions and Applications (Springer, 1989) [ISBN: 0-387-50498-2].
<a href="https://doi.org/10.1007/978-3-642-61544-3">https://doi.org/10.1007/978-3-642-61544-3</a>
</li>
<li> I.I. Gikhman, A.V. Skorokhod. The Theory of Stochastic Processes I (Springer, 2004) [ISBN: 3-540-20284-6].
<a href="https://doi.org/10.1007/978-3-642-61943-4">https://doi.org/10.1007/978-3-642-61943-4</a>
</li>
<li> E. Ng, M. Geller. A table of integrals of the error functions. J. Res. Natl. Bureau Stand. B 73B, 1 (1969).
<a href="https://doi.org/10.6028/jres.073B.001">https://doi.org/10.6028/jres.073B.001</a>
</li>
<li> Sh. Sulaberidze. Methods for Analyzing and Processing Measured Quantity Values (Baltian State Technical University, 2013) (in Russian) [ISBN: 978-5-85546-742-0].
</li>
<li> E. Inman, E. Bradley. The owerlapping coefficient as a measure of the agreement between probability distributions and point estimation of the overlap of two normal densities. Commun. Stat. Theor. Methods 18, 3851 (1989).
<a href="https://doi.org/10.1080/03610928908830127">https://doi.org/10.1080/03610928908830127</a>
</li>
<li> Z. Karian, E. Dudewicz. Handbook of Fitting Statistical Distributions with R (Taylor and Francis, 2011) [ISBN: 978-1-58488-711-9].
</li>
<li> D.C. Dowson, B.V. Landau. The Fr’echet distance between multivariate normal distributions. J. Multivar. Anal. 12, 450 (1982).
<a href="https://doi.org/10.1016/0047-259X(82)90077-X">https://doi.org/10.1016/0047-259X(82)90077-X</a>
</li>
<li> M. Varanasi, B. Aazhang. Parametric generalized Gaussian density estimation. J. Acoust. Soc. Am. 86, 1404 (1989).
<a href="https://doi.org/10.1121/1.398700">https://doi.org/10.1121/1.398700</a>
</li>
<li> S. Nadarajah. A generalized normal distribution. J. Appl. Stat. 32, 685 (2005).
<a href="https://doi.org/10.1080/02664760500079464">https://doi.org/10.1080/02664760500079464</a>
</li>
<li> J. Behboodian. On a mixture of normal distributions. Biometrica 57, 215 (1970).
<a href="https://doi.org/10.1093/biomet/57.1.215">https://doi.org/10.1093/biomet/57.1.215</a>
</li>
<li> N.N. Aprausheva, S.V. Sorokin. Notes on Gaussian Mixtures (Computation Center of the Russian Academy of Sciences, 2015) (in Russian).
</li>
<li> B. Voigtlander. Scanning Probe Microscopy. Atomic Force Microscopy and Scanning Tunneling Microscopy (Springer, 2015) [ISBN: 978-3-662-45239-4].
</li>
<li> N.M. Sergeev. NMR Spectroscopy (Moscow State University, 1981) (in Russian).
</li>
<li> E. Rutherford, F. Soddy. A comparative study of the radioactivity of radium and thorium. Phil. Mag. 5, 445 (1903).
<a href="https://doi.org/10.1080/14786440309462943">https://doi.org/10.1080/14786440309462943</a>
</li>
<li> T. Akhromeeva, S. Kurdyumov, G. Malinetskii, A. Samarskii. Structures and Chaos in Nonlinear Media (Fizmatlit, 2007) (in Russian) [ISBN: 978-5-9221-0887-4].
</li>
<li> M. Schroder. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Freeman, 1991) [ISBN: 0-7167-2136-8].
</li>
<li> A.A. Nikitin. Statistical Methods for Distinguishing Geophysical Anomalies (Nedra, 1979) (in Russian).</li>

Опубліковано

2018-08-02

Як цитувати

Kosobutskyy, P. (2018). Оптимальні закономірності нормального розподілу з точки зору оцінки статистики вибірки результатів фізичного експерименту. Український фізичний журнал, 63(7), 645. https://doi.org/10.15407/ujpe63.7.645

Номер

Розділ

Загальна фізика