Generalized Equidistant Chebyshev Polynomials and Alexander Knot Invariants

Authors

  • A. M. Pavlyuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.6.488

Abstract

We introduce the generalized equidistant Chebyshev polynomials T(k,h) of kind k of hyperkind h, where k, h are positive integers. They are obtained by a generalization of standard and monic Chebyshev polynomials of the first and second kinds. This generalization is fulfilled in two directions. The horizontal generalization is made by introducing hyperkind ℎ and expanding it to infinity. The vertical generalization proposes expanding kind k to infinity with the help of the method of equidistant coefficients. Some connections of these polynomials with the Alexander knot and link polynomial invariants are investigated.

References

<ol>
<li>M.F. Atiyah. The Geometry and Physics of Knots (Cambridge Univ. Press, 1990).
<a href="https://doi.org/10.1017/CBO9780511623868">https://doi.org/10.1017/CBO9780511623868</a>
</li>
<li>L.H. Kauffman. Knots and Physics (World Scientific, 2001).
<a href="https://doi.org/10.1142/4256">https://doi.org/10.1142/4256</a>
</li>
<li>L.H. Kauffman (editor). The Interface of Knots and Physics. AMS Short Course Lecture Notes, a subseries of Proc. Symp. App. Math. 51 (AMS, 1996).
<a href="https://doi.org/10.1090/psapm/051">https://doi.org/10.1090/psapm/051</a>
</li>
<li>E. Radu, M.S. Volkov. Stationary ring solitons in field theory – knots and vortons. Phys. Rep. 468 (4), 101 (2008).
<a href="https://doi.org/10.1016/j.physrep.2008.07.002">https://doi.org/10.1016/j.physrep.2008.07.002</a>
</li>
<li>J.H. Conway. An enumeration of knots and links. In: Computational Problems in Abstract Algebra (Pergamon, 1970).
</li>
<li>J.W. Alexander. Topological invariants of knots and links. Trans. Amer. Math. Soc. 30, 275 (1928).
<a href="https://doi.org/10.1090/S0002-9947-1928-1501429-1">https://doi.org/10.1090/S0002-9947-1928-1501429-1</a>
</li>
<li>V.F.R. Jones. A polynomial invariant for knots and links via von Neumann algebras Bull. AMS 12, 103 (1985).
</li>
<li>P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millet, A. Ocneanu. A new polynomial invariant of knots and links. Bull. AMS 12, 239 (1985).
<a href="https://doi.org/10.1090/S0273-0979-1985-15361-3">https://doi.org/10.1090/S0273-0979-1985-15361-3</a>
</li>
<li>T.J. Rivlin. Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory (Wiley, 1990).
</li>
<li> A.M. Gavrilik, A.M. Pavlyuk. On Chebyshev polynomials and torus knots. Ukr. J. Phys. 55, 129 (2010).
</li>
<li> A.M. Gavrilik, A.M. Pavlyuk. Alexander polynomial invariants of torus knots T(n,3) and Chebyshev polynomials. Ukr. J. Phys. 56, 680 (2011).
</li>
<li> A.M. Pavlyuk. On T(n, 4) torus knots and Chebyshev polynomials. Ukr. J. Phys. 57, 439 (2012).
</li>
<li> A.M. Pavlyuk. Polynomial invariants of torus knots and (p, q)-calculus. Algebras, Groups and Geometries 31, 175 (2014).
</li>
<li> D. Rolfsen. Knots and Links (Publish or Perish, 1976).
</li>
<li> W.B.R. Lickorish. An Introduction to Knot Theory (Springer, 1997).
<a href="https://doi.org/10.1007/978-1-4612-0691-0">https://doi.org/10.1007/978-1-4612-0691-0</a></li>

Downloads

Published

2018-07-12

How to Cite

Pavlyuk, A. M. (2018). Generalized Equidistant Chebyshev Polynomials and Alexander Knot Invariants. Ukrainian Journal of Physics, 63(6), 488. https://doi.org/10.15407/ujpe63.6.488

Issue

Section

General physics