Excited State Molecular Parameters Determined by Spectral Means

Authors

  • D. O. Dorohoi Faculty of Physics, Alexandru Ioan Cuza University of Iasi

DOI:

https://doi.org/10.15407/ujpe63.8.701

Keywords:

electronic absorption spectra, excited state dipole moment, azobenzene derivatives

Abstract

The possibility to characterize the electronic excited state of a spectrally active molecule based only on the solvatochromic study of electronic absorption spectra is demonstrated. The values of the regression coefficients given the contribution of universal interactions to the spectral shift and their theoretically established dependences on the solute molecule microscopic parameters are used. The values of the dipole moment, polarizability, and ionization potential in the ground electronic state of a spectrally active molecule are established by quantum mechanical methods. Two azo dye molecules are chosen in order to exemplify this method.

References

<ol>
<li>B. Siddlingeshwar, S.M. Hanagodimath. Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method. Spectrochim. Acta A, Mol. and Biomol. Spectrosc. 72, 490 (2009).
<a href="https://doi.org/10.1016/j.saa.2008.10.020">https://doi.org/10.1016/j.saa.2008.10.020</a>
</li>
<li>B. Siddlingeshwar, S.M. Hanagodimath. Estimation of the ground and the first excited singlet-state dipole moments of 1,4-disubstituted anthraquinone dyes by the solvatochromic method. Spectrochim. Acta A, Mol. and Biomol. Spectrosc 75, 1203 (2010).
<a href="https://doi.org/10.1016/j.saa.2009.12.007">https://doi.org/10.1016/j.saa.2009.12.007</a>
</li>
<li>M. Homocianu, A. Airinei, D.O. Dorohoi. Solvent effects on the electronic absorption and fluorescence spectra. J. Adv. Res. Phys. 2 (1), 011105 (2011).
</li>
<li>N. Mataga, Y. Kaifu, M. Koizumi. Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull. Chem. Soc. Jpn. 29, 465 (1956).
<a href="https://doi.org/10.1246/bcsj.29.465">https://doi.org/10.1246/bcsj.29.465</a>
</li>
<li>P. Suppan. Solvent effects on the energy of electronic transitions: Experimental observations and applications to structural problems of excited molecules. J. Chem. Soc. A 3125 (1968).
<a href="https://doi.org/10.1039/j19680003125">https://doi.org/10.1039/j19680003125</a>
</li>
<li>A. Kawschi. On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z. Naturforsch 57, 255 (2002).
</li>
<li>N. G. Bakhshiev, M.I. Knyazhanskii, V.I. Minkin, O.A. Osipov, G.V. Saidov. Experimental determination of the dipole moments of organic molecules in excited electronic states. Usp. Khimii 38 (9), 1644 (1969).
<a href="https://doi.org/10.1070/RC1969v038n09ABEH001831">https://doi.org/10.1070/RC1969v038n09ABEH001831</a>
</li>
<li>T. Abe. The dipole moments and polarizabilities in the excited states of four benzene derivatives from spectral solvent shifts. Bull. Chem. Soc. Jpn. 40 (7), 1571 (1967).
<a href="https://doi.org/10.1246/bcsj.40.1571">https://doi.org/10.1246/bcsj.40.1571</a>
</li>
<li>D. Babusca A.C. Benchea, D.G. Dimitriu, D.O. Dorohoi. Spectral and quantum mechanical characterization of 3-(2-benzothiazolyl)-7-(diethylamino) coumarin (coumarin 6) in binary solution. Analyt. Lett. 50 (17), 2740 (2017).
<a href="https://doi.org/10.1080/00032719.2017.1300589">https://doi.org/10.1080/00032719.2017.1300589</a>
</li>
<li> D. Babusca A.C. Benchea, D.G. Dimitriu, D.O. Dorohoi. Solvatochromic characterization of sudan derivatives in binary and ternary solution. Analyt. Lett. 49 (16), 2615 (2016).
<a href="https://doi.org/10.1080/00032719.2016.1152275">https://doi.org/10.1080/00032719.2016.1152275</a>
</li>
<li> H. Raw. Photoisomerization of azobenzenes. In Photochemistry and Photophysics, vol. 2. Edited by J.F. Rabek, G.W. Scott (CRC Press, 1990), p. 119 [ISBN: 9780849340420].
</li>
<li> G.S. Kumar, Azo-Functional Polymers (Technonic Press, 1992).
</li>
<li> K. Alizadeh, S. Seyyedi, M. Shamsipur, S. Rouhani, K. Haghbeen. Solvatochromism and temperature effects on the electronic absorption spectra of some azo dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 691 (2009).
<a href="https://doi.org/10.1016/j.saa.2009.07.020">https://doi.org/10.1016/j.saa.2009.07.020</a>
</li>
<li> H. Faustino, C.R. Brannigan, L.V. Reis, P.F. Santos, P. Almeida. Novel azobenzothiazole dyes from 2-nitrosobenzothiazoles. Dyes Pigm. 83, 88 (2009).
<a href="https://doi.org/10.1016/j.dyepig.2009.03.018">https://doi.org/10.1016/j.dyepig.2009.03.018</a>
</li>
<li> A. Airinei, E. Rusu. D.O. Dorohoi. Solvent influence on the electronic absorption spectra of some azoaromatic compounds. Spectrosc. Lett. 34, 65 (2001).
<a href="https://doi.org/10.1081/SL-100001452">https://doi.org/10.1081/SL-100001452</a>
</li>
<li> E. Rusu, D.O. Dorohoi, A. Airinei. Solvatochromic effects in the absorption spectra of some azobenzene compounds. J. Mol. Struct. 887, 216 (2008).
<a href="https://doi.org/10.1016/j.molstruc.2008.01.053">https://doi.org/10.1016/j.molstruc.2008.01.053</a>
</li>
<li> L.M. Ivan, V. Closca, M. Burlea, E. Rusu, A. Airinei, D.O. Dorohoi. About intermolecular interactions in binary and ternary solutions of some azo-benzene derivatives. Spectrochim. Acta A: Mol. and Biomol. Spectroscopy 136, 2008 (2015).
<a href="https://doi.org/10.1016/j.saa.2014.07.083">https://doi.org/10.1016/j.saa.2014.07.083</a>
</li>
<li> E.G. McRae. Theory of solvent effects on molecular electronic spectra. Frequency shifts. J. Phys. Chem. 61, 562 (1957).
<a href="https://doi.org/10.1021/j150551a012">https://doi.org/10.1021/j150551a012</a>
</li>
<li> C. Reichardt. Solvents and Solvent Effects in Organic Chemistry (Wiley-VCH, 2003) [ISBN: 9783527306183].
</li>
<li> N.G. Bakhshiev. Spectroscopy of Intermolecular Interactions (Nauka, 1972) (in Russian).
</li>
<li> T. Abe. Theory of solvent effects on molecular electronic spectra. frequency shifts. Bull. Chem. Soc. Jpn. 38, 1314 (1965).
<a href="https://doi.org/10.1246/bcsj.38.1314">https://doi.org/10.1246/bcsj.38.1314</a>
</li>
<li> E.M. Kosower. The effect of solvent on spectra. I. A new empirical measure of solvent polarity: Z-values. J. Am. Chem. Soc. 80, 3253 (1958).
<a href="https://doi.org/10.1021/ja01546a020">https://doi.org/10.1021/ja01546a020</a>
</li>
<li> Handbook of Solvents. Edited by G. Wypyck (Chem. Tec. Publ., 2001).
</li>
<li> HyperChem 8.0.6. Molecular Visualization and Simulation Program Package (Hypercube, Fl., 2007).
</li>
<li> D. Debnath, A. Purkayastha, R. Chowdhury, T.K. Misra. Spectral regression analysis of solvent parameters on azoderivatives of 1,3-dimethyl-5-(arylazo)-6-aminouracil and estimation of change in dipole moment from ground to excited state. J. Indian Chem. Soc. 93 (8), 1 (2016).
</li>
<li> J. Jayabharathi, V. Thanikachalam, M.V. Perumal, S. Natesan. A physiochemical study of azo dyes: DFT based ESIPT process. Spectrochim. Acta A 83 (1), 200 (2011).
<a href="https://doi.org/10.1016/j.saa.2011.08.017">https://doi.org/10.1016/j.saa.2011.08.017</a>
</li>

Downloads

Published

2018-09-07

How to Cite

Dorohoi, D. O. (2018). Excited State Molecular Parameters Determined by Spectral Means. Ukrainian Journal of Physics, 63(8), 701. https://doi.org/10.15407/ujpe63.8.701

Issue

Section

Optics, atoms and molecules