Визначення кислотності Бронстеда для протонованих цеолітів ІЧ-спектроскопією за змінної температури

Автор(и)

  • C. O. Areán Department of Chemistry, University of the Balearic Islands

DOI:

https://doi.org/10.15407/ujpe63.6.538

Ключові слова:

Brønsted acidity, infrared spectroscopy, zeolites

Анотація

Багато застосувань цеолiтiв у промисловостi як кислотних каталiзаторiв у твердiй фазi ґрунтуються на їх високiй кислотностi Бронстеда, що визначає їх каталiтичнi властивостi i селективнiсть i на наявностi точної апаратури для вимiрювання кислотностi. Змiна ентальпiї ΔH0, що супутня взаємодiї за допомогою водневого зв’язку мiж слабкою основою (такою як окис вуглецю) i гiдроксильною групою в [Si(OH)Al] з кислотнiстю Бронстеда, має безпосередньо корелювати з кислотнiстю цеолiтiв. Для простоти замiсть ΔH0 зазвичай вимiрюється при низькiй (фiксованiй) температурi з застосуванням IЧ-спектроскопiї батохромний зсув частоти коливань OH, Δv(OH), що корелює з силою кислоти для рiзних кислотностей цеолiтiв. У данiй роботi IЧ-спектроскопiю за змiнної температури застосовано для одночасного визначення ΔH0 i Δv(OH) та дано огляд результатiв недавнiх експериментiв. Показано, що практика визначення сили кислоти по зрушенню частоти O–H коливань при взаємодiї зi слабкою основою може бути помилковою, особливо при порiвняннi цеолiтiв з широким дiапазоном структур.

Посилання

<ol>
<li>R. Szostak. Molecular Sieves: Principles of Synthesis and Identification (Van Nostrand Reinhold, 1989).
</li>
<li>M.G. Clerici. Zeolites for fine chemicals production. Top. Catal. 13 (4), 373 (2000).
<a href="https://doi.org/10.1023/A:1009063106954">https://doi.org/10.1023/A:1009063106954</a>
</li>
<li>B. Xu, C. Sievers, S.B. Hong, R. Prins, J.A. van Bokhoven. Catalytic activity of Bronsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. J. Catal. 244, 163 (2006).
<a href="https://doi.org/10.1016/j.jcat.2006.08.022">https://doi.org/10.1016/j.jcat.2006.08.022</a>
</li>
<li>D.P. Serrano, R.A. Garc’?a, G. Vicente, M. Linares, D. Proch’azkov’a, J. ? Cejka. Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materialsassembled from MFI protozeolitic units. J. Catal. 279, 366 (2011).
<a href="https://doi.org/10.1016/j.jcat.2011.02.007">https://doi.org/10.1016/j.jcat.2011.02.007</a>
</li>
<li>E.T.C. Vogt, G.T. Whiting, A.D. Chowdhury, B.M. Weckhuysen. Zeolites and zeotypes for oil and gas conversion. In Advances in Catalysis. Edited by F.C. Jentoft (Academic Press, 2015), 58, p. 143.
<a href="https://doi.org/10.1016/bs.acat.2015.10.001">https://doi.org/10.1016/bs.acat.2015.10.001</a>
</li>
<li>K.A. Tarach, K. Gora-Marek, J. Martinez-Triguero, I. Melian-Cabrera. Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catal. Sci. Technol. 7, 858 (2017).
<a href="https://doi.org/10.1039/C6CY02609E">https://doi.org/10.1039/C6CY02609E</a>
</li>
<li>P. Losch, A.B. Pinar, M.G. Willinger, K. Soukup, S. Chavan, B. Vincent, P. Pale, B. Louis. H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. J. Catal. 345, 11 (2017).
<a href="https://doi.org/10.1016/j.jcat.2016.11.005">https://doi.org/10.1016/j.jcat.2016.11.005</a>
</li>
<li>J. ? Cejka, R.E. Morris, D.P. Serrano. Catalysis on zeolites – catalysis science & technology. Catal. Sci. Technol. 6, 2465 (2016).
<a href="https://doi.org/10.1039/C6CY90042A">https://doi.org/10.1039/C6CY90042A</a>
</li>
<li>W.E. Farneth, R.J. Gorte. Methods for characterizing zeolite acidity. Chem. Rev. 95, 615 (1995).
<a href="https://doi.org/10.1021/cr00035a007">https://doi.org/10.1021/cr00035a007</a>
</li>
<li> A.L. Blumenfeld, J.J. Fripiat. 27Al 1H REDOR NMR and 27Al spin-echo editing: A new way to characterize Bronsted and Lewis acidity in zeolites. J. Phys. Chem. B 101, 6670 (1997).
<a href="https://doi.org/10.1021/jp970564y">https://doi.org/10.1021/jp970564y</a>
</li>
<li> C. Busco, A. Barbaglia, M. Broyer, V. Bolis, G.M. Foddanu, P. Ugliengo. Characterisation of Lewis and Bronsted acidic sites in H-MFI and H-BEA zeolites: a thermodynamic and ab initio study. Thermochim. Acta 418, 3 (2004).
<a href="https://doi.org/10.1016/j.tca.2003.11.050">https://doi.org/10.1016/j.tca.2003.11.050</a>
</li>
<li> L. Peng, Y. Liu, N. Kim, J.E. Readman, C.P. Grey. Detection of Bronsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nature Mater. 4, 216 (2005).
<a href="https://doi.org/10.1038/nmat1332">https://doi.org/10.1038/nmat1332</a>
</li>
<li> J. Vaculik, M. Setnicka, R. Bulanek. Study of Bronsted acid site in H-MCM-22 zeolite by temperature-programmed desorption of ammonia. J. Therm. Anal. Calorim. 125, 1217 (2016).
<a href="https://doi.org/10.1007/s10973-016-5349-2">https://doi.org/10.1007/s10973-016-5349-2</a>
</li>
<li> A. Auroux. Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top. Catal. 19, 205 (2002).
<a href="https://doi.org/10.1023/A:1015367708955">https://doi.org/10.1023/A:1015367708955</a>
</li>
<li> M. Niwa, N. Katada. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review. Chem. Rec. 13, 432 (2013).
<a href="https://doi.org/10.1002/tcr.201300009">https://doi.org/10.1002/tcr.201300009</a>
</li>
<li> E.G. Derouane, J.C. V’edrine, R. Ramos Pinto, P.M. Borges, L. Costa, M.A.N.D.A. Lemos, F. Lemos, F.R. Ribeiro. The acidity of zeolites: Concepts, measurements and relation to catalysis: A review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev. Sci. Eng. 55, 454 (2013).
<a href="https://doi.org/10.1080/01614940.2013.822266">https://doi.org/10.1080/01614940.2013.822266</a>
</li>
<li> A. Zecchina, C. Otero Are’an. Diatomic molecular probes for mid-IR studies of zeolites. Chem. Soc. Rev. 25, 187 (1996).
<a href="https://doi.org/10.1039/CS9962500187">https://doi.org/10.1039/CS9962500187</a>
</li>
<li> E. Garrone, B. Fubini, B. Bonelli, B. Onida, C.O. Are’an. Thermodynamics of CO adsorption on the zeolite Na-ZSM-5 A combined microcalorimetric and FTIR spectroscopic study. Phys. Chem. Chem. Phys. 1, 513 (1999).
<a href="https://doi.org/10.1039/a806973e">https://doi.org/10.1039/a806973e</a>
</li>
<li> K. Hadjiivanov. Identification and characterization of surface hydroxyl groups by infrared spectroscopy. Adv. Catal. 57, 99 (2014).
<a href="https://doi.org/10.1016/B978-0-12-800127-1.00002-3">https://doi.org/10.1016/B978-0-12-800127-1.00002-3</a>
</li>
<li> W. Daniell, N.Y. Topsoe, H. Knozinger. An FTIR study of the surface acidity of USY zeolites: Comparison of CO, CD3CN, and C5H5N probe molecules. Langmuir 17, 6233 (2001).
<a href="https://doi.org/10.1021/la010345a">https://doi.org/10.1021/la010345a</a>
</li>
<li> C. Lamberti, A. Zecchina, E. Groppo, S. Bordiga. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39, 4951 (2010).
<a href="https://doi.org/10.1039/c0cs00117a">https://doi.org/10.1039/c0cs00117a</a>
</li>
<li> C.O. Are’an. Dinitrogen and carbon monoxide hydrogen bonding in protonic zeolites: Studies from variable-temperature infrared spectroscopy. J. Mol. Struct. 880, 31 (2008).
<a href="https://doi.org/10.1016/j.molstruc.2007.11.004">https://doi.org/10.1016/j.molstruc.2007.11.004</a>
</li>
<li> A. Pulido, M.R. Delgado, O. Bludsk’y, M. Rube?s, P. Nachtigall, C.O. Are’an. Combined DFT/CC and IR spectroscopic studies on carbon dioxide adsorption on the zeolite H-FER. Energy Environ. Sci. 2, 1187 (2009).
<a href="https://doi.org/10.1039/b911253g">https://doi.org/10.1039/b911253g</a>
</li>
<li> M. Mihaylov, S. Andonova, K. Chakarova, A. Vimont, E. Ivanova, N. Drenchev, K. Hadjiivanov. An advanced approach for measuring acidity of hydroxyls in confined space: a FTIR study of low-temperature CO and 15N2 adsorption on MOF samples from the MIL-53(Al) series. Phys. Chem. Chem. Phys. 17, 24304 (2015).
<a href="https://doi.org/10.1039/C5CP04139B">https://doi.org/10.1039/C5CP04139B</a>
</li>
<li> J.A. Lercher, C. Grundling, G. Eder-Mirth. Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal. Today 27, 353 (1996).
<a href="https://doi.org/10.1016/0920-5861(95)00248-0">https://doi.org/10.1016/0920-5861(95)00248-0</a>
</li>
<li> V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R.G. Bell, C.R.A. Catlow. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044 (2015).
<a href="https://doi.org/10.1039/C5CS00029G">https://doi.org/10.1039/C5CS00029G</a>
</li>
<li> M.R. Delgado, C. Otero Are’an. Carbon monoxide, dinitrogen and carbon dioxide adsorption on zeolite H-Beta: IR spectroscopic and thermodynamic studies. Energy 36, 5286 (2011).
<a href="https://doi.org/10.1016/j.energy.2011.06.033">https://doi.org/10.1016/j.energy.2011.06.033</a>
</li>
<li> M.R. Delgado, R. Bul’anek, P. Chlubn’a, C. Otero Are’an. Bronsted acidity of H-MCM-22 as probed by variable- temperature infrared spectroscopy of adsorbed CO and N2. Catal. Today 227, 45 (2014).
<a href="https://doi.org/10.1016/j.cattod.2013.09.013">https://doi.org/10.1016/j.cattod.2013.09.013</a>
</li>
<li> C.O. Are’an, G. Turnes Palomino, A. Zecchina, G. Spoto, S. Bordiga, P. Roy. Cation–carbon stretching vibration of adducts formed upon CO adsorption on alkaline zeolites. Phys. Chem. Chem. Phys. 1, 4139 (1999).
<a href="https://doi.org/10.1039/a905717j">https://doi.org/10.1039/a905717j</a>
</li>
<li> E. Garrone, C.O. Are’an. Variable temperature infrared spectroscopy: A convenient tool for studying the thermodynamics of weak solid—gas interactions. Chem. Soc. Rev. 34, 846 (2005).
<a href="https://doi.org/10.1039/b407049f">https://doi.org/10.1039/b407049f</a>
</li>
<li> A.A. Tsyganenko, P.Yu. Storozhev, C.O. Are’an. IR-spectroscopic study of the binding isomerism of adsorbed molecules. Kinet. Catal. 45, 530 (2004).
<a href="https://doi.org/10.1023/B:KICA.0000038081.43384.56">https://doi.org/10.1023/B:KICA.0000038081.43384.56</a>
</li>
<li> P. Nachtigall, O. Bludsk’y, L. Grajciar, D. Nachtigallov’a, M.R. Delgado, C.O. Are’an. Computational and FTIR spectroscopic studies on carbon monoxide and dinitrogen adsorption on a high-silica H-FER zeolite. Phys. Chem. Chem. Phys. 11, 791 (2009).
<a href="https://doi.org/10.1039/B812873A">https://doi.org/10.1039/B812873A</a>
</li>
<li> W.J. Roth, J. ? Cejka. Two-dimensional zeolites: Dream or reality? Catal. Sci. Technol. 1, 43 (2011).
<a href="https://doi.org/10.1039/c0cy00027b">https://doi.org/10.1039/c0cy00027b</a>
</li>
<li> W.J. Roth, P. Chlubn’a, M. Kubu, D. Vitvarov’a. Swelling of MCM-56 and MCM-22P with a new medium – surfactant-tetramethylammonium hydroxide mixtures. Catal. Today 204, 8 (2013).
<a href="https://doi.org/10.1016/j.cattod.2012.07.040">https://doi.org/10.1016/j.cattod.2012.07.040</a>
</li>
<li> C.O. Are’an, M.R. Delgado, P. Nachtigall, H.V. Thang, M. Rube?s, R. Bul’anek, P. Chlubn’a-Elia?sov’a. Measuring the Bronsted acid strength of zeolites – does it correlate with the O–H frequency shift probed by a weak base? Phys. Chem. Chem. Phys. 16, 10129 (2014).
<a href="https://doi.org/10.1039/C3CP54738H">https://doi.org/10.1039/C3CP54738H</a>
</li>
<li> A. Zecchina, S. Bordiga, G. Spoto, D. Scarano, G. Petrini, G. Leofanti, M. Padovan, C.O. Are’an. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. J. Chem. Soc. Faraday Trans. 88, 2959 (1992).
<a href="https://doi.org/10.1039/FT9928802959">https://doi.org/10.1039/FT9928802959</a>
</li>
<li> V. Dondur, V. Rakic, L. Damjanovic, A. Auroux. Comparative study of the active sites in zeolites by different probe molecules. J. Serb. Chem. Soc. 70, 457 (2005).
<a href="https://doi.org/10.2298/JSC0503457D">https://doi.org/10.2298/JSC0503457D</a>
</li>
<li> C.O. Are’an, O.V. Manoilova, A.A. Tsyganenko, G.T. Palomino, M.P. Mentruit, F. Geobaldo, E. Garrone. Thermodynamics of Hydrogen bonding between CO and the supercage Bronsted acid sites of the H–Y zeolite – studies from variable temperature IR spectrometry. Eur. J. Inorg. Chem. 1739 (2001).
</li>
<li> C.C. Tsai, C.Y. Zhong, L. Wang, S.B. Liu, W. Chen, T.C.Tsai.Vapor phaseBeckmann rearrangement of cyclohexanone oxime overMCM-22.Appl.Catal.A 267, 87 (2004).
<a href="https://doi.org/10.1016/j.apcata.2004.02.026">https://doi.org/10.1016/j.apcata.2004.02.026</a>
</li>
<li> Z. Zhu, Q. Chen, Z. Xie, W. Yang, C. Li. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Micropor. Mesopor. Mater. 88, 16 (2006).
<a href="https://doi.org/10.1016/j.micromeso.2005.08.021">https://doi.org/10.1016/j.micromeso.2005.08.021</a></li>

Downloads

Опубліковано

2018-07-12

Як цитувати

Areán, C. O. (2018). Визначення кислотності Бронстеда для протонованих цеолітів ІЧ-спектроскопією за змінної температури. Український фізичний журнал, 63(6), 538. https://doi.org/10.15407/ujpe63.6.538

Номер

Розділ

Фізика поверхні