Експериментальне дослідження неоднорідної плазми відбивного розряду за допомогою інтерферометра на основі рефракції мікрохвиль
DOI:
https://doi.org/10.15407/ujpe63.12.1057Ключові слова:
плазма, дiагностика плазми, iнтерферометрiя, рефракцiя, мiкрохвильовi променiАнотація
Проведено розрахунок фазового зсуву при iнтерферометрiї плазми похилими мiкрохвилями та крiзь центр плазмового утворення. Розраховано значення критичного радiуса rcr плазмового шару з густиною рiвнiй Ncr, для рiзноманiтних функцiй розподiлу вздовж радiуса, коли мiкрохвильовi променi не потрапляють до антени. Експериментально отримана часова залежнiсть змiни фазового зсуву для наскрiзного та похилого зондування. З фазових зсувiв, вимiряних обома iнтерферометрами, визначено залежнiсть добутку NpL (Np – концентрацiя електронiв плазми, L – довжина оптичного шляху мiкрохвильового променя в вакуумi) у часi, а також оцiнено величину середньої густини плазми.
Посилання
M.A. Heald, C.B. Wharton. Plasma Diagnostics with Microwaves (Wiley, 1965).
V.E. Golant. Superhigh-Frequency Methods of Plasma Research (Nauka, 1968) (in Russian).
H.-J. Hartfuss, T. Geist. Fusion Plasma Diagnostics with mm-Waves: An Introduction (Wiley-VCH, 2013) [ISBN: 978-3-527-41105-4]. https://doi.org/10.1002/9783527676279
E. Mazzucato. Electromagnetic Waves for Thermonuclear Fusion Research (World Scientific, 2014) [ISBN: 978-981-4571-80-7]. https://doi.org/10.1142/9020
R.F. Whitmer. Microwave studies of the electron loss processes in gaseous discharges. Phys. Rev. 104, 572 (1956). https://doi.org/10.1103/PhysRev.104.572
C.B. Wharton, D.M. Slager. Microwave determination of plasma density profiles. J. Appl. Phys. 31, 428 (1960). https://doi.org/10.1063/1.1735587
L.O. Dushyn, V.I. Kononenko, R.I. Kovtun, A.I. Skibenko, K.D. Sinelnikov, V.T. Tolok. Plasma study using a microwave interferometer. Ukr. Fiz. Zh. 8, 740 (1963) (in Ukrainian).
L.O. Dushyn, V.I. Kononenko, R.I. Kovtun, V.I. Pryvezentsev, A.I. Skibenko. The use of interferometer and microwave cut-off method for plasma research. Ukr. Fiz. Zh. 10, 977 (1965).
K. Dittmann, C. Kullig, J. Meichsner. 160-GHz Gaussian beam microwave interferometry in low-density RF plasmas. Plasma Sourc. Sci. Technol. 21, 024001 (2012). https://doi.org/10.1088/0963-0252/21/2/024001
Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, A.N. Shapoval, E.D. Volkov, V.B. Yuferov. Study of multicomponent plasma parameters in the pulsed reflex discharge. Ukr. J. Phys. 55, 1269 (2010).
R.O. Pavlichenko, N.V. Zamanov, A.E. Kulaga. First measurements of line electron density in Uragan-2M plasmas via 140 GHz heterodyne interferometer. Probl. At. Sci. Tech. No. 1, 257 (2017).
M. Varavin, J. Zajac, F. Zacek, S. Nanobashvili, G.P. Ermak, A.V. Varavin, A.S. Vasilev, M. Stumbora, A. Vetoshko, A.V. Fateev, V.V. Shevchenko. New design of microwave interferometer for tokamak compass. Telecommun. Radio Eng. 73, 935 (2014). https://doi.org/10.1615/TelecomRadEng.v73.i10.80
I.E. Arsaev, B.E. Kinber, N.N. Ivanchinov-Marinskii. Influence of the medium refraction and absorption on the transmission coefficient between two antennas at plasma diagnostics. Zh. Tekhn. Fiz. 37, 1495 (1967) (in Russian).
V.G. Grigorenko, L.A. Dushin, A.I. Skibenko. Influence of refraction on the determination accuracy of plasma density in microwave interferometry. In High-Frequency Plasma Properties (Naukova Dumka, 1968), p. 178 (in Russian). B. Anichin, Influence of refraction on radio interferometric measurements of electron density distribution. Zh. Tekhn. Fiz. 39, 478 (1969) (in Russian).
V.G. Petrov, Influence of refraction on plasma density measurements. Plasma Phys. Rep. 32, 311 (2006). https://doi.org/10.1134/S1063780X06040052
M.M.Z. Kharadly, A new millimetre-wave method for determination of electron-density profiles in a linear discharge. Proc. IEE 110, 1202 (1963). https://doi.org/10.1049/piee.1963.0168
B.A. Anicin. Electron density profiles in cylindrical plasmas from microwave refraction data. Radio Sci. J. Res. 69D, 721 (1965). https://doi.org/10.6028/jres.069D.081
L.A. Dushin, V.I. Kononenko, V.L. Sizonenko. A.I. Skibenko, K.N. Stepanov. Determination of the spatial distribution of plasma density by microwave beam refraction. Zh. Tekhn. Fiz. 36, 304 (1966) (in Russian).
L.A. Dushin, V.I. Kononenko, A.I. Skibenko. Determination of the spatial distribution of plasma density by refraction of microwave beams with several frequency components. Zh. Tekhn. Fiz. 36, 1842 (1966) (in Russian).
V.V. Nemov, V.L. Sizonenko, K.N. Stepanov, J. Teichman, Methods of determining the density and temperature distribution of a plasma using electromagnetic waves. Nucl. Fusion 9, 243 (1969). https://doi.org/10.1088/0029-5515/9/3/008
A.R. Jones, B.V. Stanic, E.R. Wooding. Plasma-density determination from the phase shift in scattered radiation. Electron. Lett. 4, 392 (1968). https://doi.org/10.1049/el:19680309
A.I Skibenko, I.B. Pinos, Yu.V. Kovtun, E.I. Skibenko. Plasma interferometry using refraction of oblique microwave beams. In Abstracts of the Ukrainian Conference on Plasma Physics and Controlled Thermonuclear Fusion, September 22–23, 2015, Kyiv (2015), p. 55 (in Ukrainian).
A.I. Skibenko, I.B. Pinos, Yu.V. Kovtun, E.I. Skibenko, E.V. Syus'ko, Application of microwave beam refraction in inhomogeneous plasma interferometry. Ukr. J. Phys. 61, 715 (2016). https://doi.org/10.15407/ujpe61.08.0715
Yu.V. Kovtun, E.V. Syus'ko, E.I. Skibenko, A.I. Skibenko, Refraction of microwaves in an inhomogeneous rotating plasma. Probl. At. Sci. Tech. No. 6, 169 (2016).
Yu.V. Kovtun, E.I. Skibenko, A.I. Skibenko, A.N. Ozerov, I.B. Pinos, E.V. Syus'ko. Interferometry of plasma with the use of the microwave ray refraction. In: 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW) (Kharkiv, 2016), p. 1–4. https://doi.org/10.1109/MSMW.2016.7537991
E.I. Skibenko, Yu.V. Kovtun, A.M. Egorov,V.B. Yuferov. Material separation into elements based on the physical principles of beam-plasma and reflex discharges. Probl. At. Sci. Tech. No. 2, 141 (2011).
D.A. Dolgolenko, Y.A. Muromkin. Separation of mixtures of chemical elements in plasma. Physics-Uspekhi 60, 994 (2017). https://doi.org/10.3367/UFNe.2016.12.038016
G.E. Ozur, D.I. Proskurovsky. Generation of low-energy high-current electron beams in plasma-anode electron guns. Plasma Phys. Rep. 44, 18 (2018). https://doi.org/10.1134/S1063780X18010130
T. Kimura, R. Yoshida, T. Mishima, K. Azuma, S. Naka. Preparation of TiN films by reactive high-power pulsed sputtering Penning discharges. Jpn. J. Appl. Phys. 57, 06JE02 (2018). https://doi.org/10.7567/JJAP.57.06JE02
Yu.V. Kovtun. Features of dense plasma formation in the reflex discharge on gas-metal mixes. Probl. At. Sci. Tech. No. 4, 38 (2013).
Yu.V. Kovtun, E.I. Skibenko, A.I. Skibenko, V.B. Yuferov. Rotation of plasma layers with various densities in crossed E × B fields. Ukr. J. Phys. 58, 450 (2013). https://doi.org/10.15407/ujpe58.05.0450
Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, Yu.V. Larin, A.N. Shapoval, E.D. Volkov, V.B. Yuferov. Study of the parameters of hydrogen-titanium plasma in a pulsed reflective discharge. Plasma Phys. Rep. 36, 1065 (2010). https://doi.org/10.1134/S1063780X10120068
V.L. Ginzburg. Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, 1961).
Yu.V. Kovtun, E.I. Skibenko, A.I. Skibenko, V.B. Yuferov. Estimation of the efficiency of material injection into the reflex discharge by sputtering the cathode material. Ukr. J. Phys. 57, 901 (2012).
Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, V.B. Yuferov. Analysis of errors in the plasma rotation velocity measurement by the method of microwave correlation reflectometry. In: 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (Kharkiv, 2013), p. 554. L.A. Dushin, A.I. Skibenko, I.P. Fomin, V.A. Pimkin, V.V. Zinoviev. Angular dispersion of microwave flux in fluctuating plasma. In Plasma Physics and Problems of Controlled Thermonucler Synthesis (Naukova Dumka, 1971), Vol. 1, p. 52 (in Russian). https://doi.org/10.1109/MSMW.2013.6622119
E. Gusakov, M. Irzak, A. Popov, Radial correlation reflectometry at oblique probing wave incidence (Linear scattering theory predictions). Plasma Phys. Control. Fus. 56, 025009 (2014). https://doi.org/10.1088/0741-3335/56/2/025009
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.