Перетворення прозорих плівок нанокомпозитів ПС-ПММА-SiO2 від супергідрофобності до супергідрофільності

Автор(и)

  • A. Sriboonruang Graduate School Chiang Mai University, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • T. Kumpika Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • W. Sroila Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • E. Kantarak Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • P. Singjai Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Materials Science Research Center, Faculty of Science, Chiang Mai University
  • W. Thongsuwan Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Materials Science Research Center, Faculty of Science, Chiang Mai University

DOI:

https://doi.org/10.15407/ujpe63.3.226

Ключові слова:

Superhydrophobic, Superhydrophilic, SiO2, PMMA, PS, Films, Dip coating

Анотація

Виготовлено прозоре супергiдрофобне нанопокриття простим крапельним шляхом. Контактний кут з водою >150∘. Розчини для покриття приготовленi розчиненням полiстирола (ПС) i полиметилметакрилата в толуолi. Для збiльшення шорсткостi покриття додавався диспергований кремнезем SiO2. Пiдiбрано умови вiдпалу i iншi чинники для оптимiзацiї прозоростi та кута контакту з водою на плiвцi. Дослiджено вплив температури вiдпалу на плiвки. Супергiдрофобнiсть спостерiгалася лише в ПС-плiвках пiсля вiдпалу при 200 ∘C. Перехiд вiд супергiдрофобностi до супергiдрофiльностi спостерiгався при температурах вiдпалу вище 200 ∘C завдяки розпаду полiмеру на гiдрофiльнi мономери.

Посилання

<ol>
<li>P. Patel, C.K. Choi, D.D. Meng. Superhydrophilic surfaces for antifoqging and antifouling microfluidic devices. J. Assoc. Lab. Autom. 15(2), 114 (2010).
<a href="https://doi.org/10.1016/j.jala.2009.10.012">https://doi.org/10.1016/j.jala.2009.10.012</a>
</li>
<li>W. Thongsuwan, T. Kumpika, P. Singjai. Effect of high roughness on a long aging time of superhydrophilic TiO2 nanoparticle thin films. Curr. Appl. Phys. 11, 1237 (2011).
<a href="https://doi.org/10.1016/j.cap.2011.03.002">https://doi.org/10.1016/j.cap.2011.03.002</a>
</li>
<li>R. F?urstner, W. Barthlott, C. Neinhuis, P.Walzel.Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956 (2005).
<a href="https://doi.org/10.1021/la0401011">https://doi.org/10.1021/la0401011</a>
</li>
<li>S. Khorsand, K. Raeissi, F. Ashrafizadeh. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process. Appl. Surf. Sci. 305, 498 (2014).
<a href="https://doi.org/10.1016/j.apsusc.2014.03.123">https://doi.org/10.1016/j.apsusc.2014.03.123</a>
</li>
<li>T. Kako, A. Nakajima, H. Irie, Z. Kato, K. Uematsu, T. Watanabe, K. Hashimoto. Adhesion and sliding of wet snow on a superhydrophobic surface with hydrophilic channels. J. Mater. Sci. 39, 547 (2004).
<a href="https://doi.org/10.1023/B:JMSC.0000011510.92644.3f">https://doi.org/10.1023/B:JMSC.0000011510.92644.3f</a>
</li>
<li>W. Intarasang, W. Thamjaree, D. Boonyawan, W. Nhuapeng. Effect of coating time on LPP treated silk fabric coated with ZnO2 nanoparticles. Chiang Mai J. Sci. 40(6), 1000 (2013).
</li>
<li>E.N. Miller, D.C. Palm, D.D. Silva, A. Parbatani, A.R. Meyers, D.L. Williams, D.E. Thompson. Microsphere lithography on hydrophobic surfaces for generating gold films that exhibit infrared localized surface plasmon resonances. J. Phys. Chem. B 117, 15313 (2013).
<a href="https://doi.org/10.1021/jp403439e">https://doi.org/10.1021/jp403439e</a>
</li>
<li>A.M. Coclite, Y. Shi, K.K. Gleason. Super-hydrophobic and oloephobic crystalline coatings by initiated chemical vapor deposition. Phys. Procedia 46, 56 (2013)
<a href="https://doi.org/10.1016/j.phpro.2013.07.045">https://doi.org/10.1016/j.phpro.2013.07.045</a>
</li>
<li>S. Liu, S.S. Latthe, H. Yang, B. Liu, R. Xing. Raspberry-like superhydrophobic silica coatings with self-cleaning properties. Ceramics Inter. 41(9), 11719 (2015).
<a href="https://doi.org/10.1016/j.ceramint.2015.05.137">https://doi.org/10.1016/j.ceramint.2015.05.137</a>
</li>
<li> D. Lopez-Torres, C. Elosua, M. Hernaez, J. Goicoechea, F.J. Arregui. From superhydrophilic to superhydrophobic surfaces by means of polymeric Layer-by-Layer films. Appl. Surf. Sci. 351, 1081 (2015).
<a href="https://doi.org/10.1016/j.apsusc.2015.06.004">https://doi.org/10.1016/j.apsusc.2015.06.004</a>
</li>
<li> J. Liang, K. Liu, D. Wang, H. Li, P. Li, S. Li, S. Su, S. Xu, Y. Luo. Facile fabrication of superhydrophilic/superhydrophobic surface on titanium substrate by single-step anodization and fluorination. Appl. Surf. Sci. 338, 126 (2015).
<a href="https://doi.org/10.1016/j.apsusc.2015.02.117">https://doi.org/10.1016/j.apsusc.2015.02.117</a>
</li>
<li> Y.H. Lin, K.L. Su, P.S. Tsai, F.L. Chuang, Y.M. Yang. Fabrication and characterization of transparent superhydrophilic/superhydrophobic silica nanoparticulate thin films. Thin Solid Films 519, 5450 (2011).
<a href="https://doi.org/10.1016/j.tsf.2011.02.081">https://doi.org/10.1016/j.tsf.2011.02.081</a>
</li>
<li> F.M. Fowkes. Attractive forces at interfaces. Ind. Eng. Chem. 56, 40 (1964).
<a href="https://doi.org/10.1021/ie50660a008">https://doi.org/10.1021/ie50660a008</a>
</li>
<li> K.Y. Law, H. Zhao. Surface Wetting: Characterization, Contact Angle, and Fundamentals. (Springer, 2015) [ISBN: 978-3-319-25214-8].
</li>
<li> T. Faravelli, M. Pinciroli, F. Pisano, G. Bozzano, M. Dente, E. Ranzi. Thermal degradation of polystyrene. J. Anal. Appl. Pyrolysis 60, 103 (2001).
<a href="https://doi.org/10.1016/S0165-2370(00)00159-5">https://doi.org/10.1016/S0165-2370(00)00159-5</a>
</li>
<li> J.D. Peterson, S. Vyazovkin, C.A. Wight. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 202, 775 (2001).
<a href="https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G">https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G</a>
</li>
<li> Y.H. Hu, C.Y. Chen. Study of the thermal behaviour of poly(methyl methacrylate) initiated by lactams and thiols. Polym. Degrad. Stab. 80, 1 (2003).
<a href="https://doi.org/10.1016/S0141-3910(02)00375-0">https://doi.org/10.1016/S0141-3910(02)00375-0</a>
</li>
<li> Y.H. Hu, C.Y. Chen. The effect of end groups on the thermal degradation of poly(methyl methacrylate). Polym. Degrad. Stab. 82, 81 (2003).
<a href="https://doi.org/10.1016/S0141-3910(03)00165-4">https://doi.org/10.1016/S0141-3910(03)00165-4</a>
</li>
<li> M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, J.L. Mieloszynski. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym. Degrad. Stab. 79, 271 (2003).
<a href="https://doi.org/10.1016/S0141-3910(02)00291-4">https://doi.org/10.1016/S0141-3910(02)00291-4</a>
</li>
<li> A. Otten, S. Herminghaus. How plants keep dry: A physicist's point of view. Langmuir 20(6), 2405 (2004).
<a href="https://doi.org/10.1021/la034961d">https://doi.org/10.1021/la034961d</a>
</li>
<li> W. Hou, Q.Wang.Wetting behavior of a SiO2–polystyrene nanocomposite surface. J. Colloid Interface Sci. 316, 206 (2007).
<a href="https://doi.org/10.1016/j.jcis.2007.07.033">https://doi.org/10.1016/j.jcis.2007.07.033</a>
</li>
<li> J.R. Anema, A.G. Brolo, A. Felten, C. Bittencourt. Surface-enhanced Raman scattering from polystyrene on gold clusters. J. Raman Spectrosc. 41, 745 (2010).
</li>
<li> W.M. Sears, J.L. Hunt, J.R. Stevens. Raman scattering from polymerizing styrene. I. Vibrational mode analysis. J. Chem. Phys. 75(4), 1589 (1981).
<a href="https://doi.org/10.1063/1.442262">https://doi.org/10.1063/1.442262</a>
</li>
<li> D.B. Menezes, A. Reyer, A. Marletta, M. Musso. Glass transition of polystyrene (PS) studied by Raman spectroscopic investigation of its phenyl functional groups. Mater. Res. Express. 754(1), 015303 (2017).
<a href="https://doi.org/10.1088/2053-1591/4/1/015303">https://doi.org/10.1088/2053-1591/4/1/015303</a>
</li></ol>

Downloads

Опубліковано

2018-04-20

Як цитувати

Sriboonruang, A., Kumpika, T., Sroila, W., Kantarak, E., Singjai, P., & Thongsuwan, W. (2018). Перетворення прозорих плівок нанокомпозитів ПС-ПММА-SiO2 від супергідрофобності до супергідрофільності. Український фізичний журнал, 63(3), 226. https://doi.org/10.15407/ujpe63.3.226

Номер

Розділ

Загальна фізика

Статті цього автора (авторів), які найбільше читають