Parameters of Charge Carrier Traps in ZnSe

Authors

  • V. Ya. Degoda Taras Shevchenko National University of Kyiv
  • M. Alizadeh Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe64.4.300

Keywords:

charge carrier traps, recombination centers, localization centers, delocalization centers, zinc selenide

Abstract

Taking zinc selenide (ZnSe) crystals as an example, a procedure of determination of the main parameters of traps is proposed. At first, the conductivity type (electron or hole one) in a crystal of phosphor at its excitation is determined with the help of photoelectric studies or studies of the thermionic emission or thermal or photo-thermal emf. Then the energy of the thermal electron delocalization is determined, e.g., by using the method of thermally stimulated luminescence with sequential fractional heating. As a result, the frequency factors of corresponding traps are found as well. Knowing the effective electron mass, it is easy to calculate the effective density of electron states in the conduction band. Finally, the cross sections of the free-electron localization and their temperature dependences can be determined for all traps from a simple equation.

References

M.V. Fok. Introduction to Luminescence Kinetics of Crystal Phosphors (Nauka, 1964) (in Russian).

V.V. Antonov-Romanovskii. Photoluminescence Kinetics of Crystal Phosphors (Nauka, 1966) (in Russian).

R.H. Bube. Photoconductivity of Solids (Wiley, 1960).

V.E. Lashkarev, A.V. Lyubchenko, M.K. Sheinkman. Nonequilibrium Processes in Photoconductors (Naukova Dumka, 1981) (in Russian).

I.Ya. Gorodetskii, K.K. Dubenskii, V.E. Lashkarev et al. Determination of parameters of recombination centers in ZnSe monocrystals. Fiz. Tekh. Poluprovodn. 1, 1666 (1967) (in Russian).

A.V. Lyubchenko, M.K. Sheinkman. Determining sticking centers parameters in semiconductors on the temperature dependence of the photocurrent. Ukr. Fiz. Zh. 18, 134 (1973) (in Russian).

D.M. Freik, A.M. Voznyak, T.O. Paraschuk, V.M. Chobanyuk, I.V. Gorychok. Localized states of electrons in semiconductors. II. Experimental methods of research (A review). Fiz. Khim. Tverd. Tila 12, 445 (2011) (in Ukrainian).

A. Chruscinska, H.L. Oczkowski. K.R. Przegietka. The parameters of traps in K-feldpars and the TL bleaching efficiency. Geochronometria 20, 15 (2001).

P.N. Brunkov, A.A. Gutkin, V.V. Chaldyshev, N.N. Bert, S.G. Konnikov, V.V. Preobrazhenskii, M.A. Putyato, B.R. Semyagin. Electron traps in thin layers of the low temperature grown gallium arsenide with As-Sb nanoclusters. Fiz. Tekh. Poluprovodn. 39, 1049 (2005) (in Russian). https://doi.org/10.1134/1.2042589

V.Ya. Degoda, A.F. Gumenyuk, Yu.A. Marazuev. Kinetics of Recombination Luminescence and Conductivity of Crystal Phosphors (Kyiv Nat. Univ. Publ. House, 2016) (in Ukrainian).

I.S. Gorban, A.F. Gumenyuk, V.A. Omel'yanenko. Thermoluminescence and polaron states in barium-sodium niobate crystals. Ukr. Fiz. Zh. 33, 530 (1988) (in Russian).

A.F. Gumenyuk, S.Yu. Kutovyi, O.B. Okhrimenko. Oscillator regularities in the trap energy spectra of CdWO4 crystals. Ukr. Fiz. Zh. 42, 870 (1997) (in Ukrainian).

I.S. Gorban, A.F. Gumenyuk, S.Yu. Kutovyi. Oscillator dependences in trap energies in ZnWO4 crystals. Ukr. Fiz. Zh. 40, 73 (1995) (in Ukrainian).

A.F. Gumenyuk, S.Yu. Kytovyi, M.O. Grebenovich. Oscillatory regularity in the trap activation energies in a-Al2O3 crystals. Funct. Mater. 9, 314 (2002).

G.P. Blinnikov, V.N. Golonzhka, A.F. Gumenyuk. Thermal properties of single crystals CsCdCl3. Opt. Spektrosk. 69, 1054 (1990) (in Russian).

I.S. Gorban, A.F. Gumenyuk, V.Ya. Degoda, S.Yu. Kutovyi. Regularities of the energy spectrums of charge carrier delocalization from traps in YAG. Opt. Spektrosk. 75, 47 (1993) (in Russian).

A.F. Gumenjuk, S.Yu. Kutovyi. Oscillator rule of the trap activation energies in NaCl crystals. Centr. Eur. J. Phys. 1, 307 (2003). https://doi.org/10.2478/BF02476299

A.F. Gumenjuk, S.Yu. Kutovyi. Thermoluminescence studies of undoped LiF crystals. II. The oscillator-like regularity in trap activation energies. Ukr. Fiz. Zh. 50, 1125 (2005) (in Ukrainian).

A. Gumenyuk, S. Kutovyi, V. Pachshenko, O Stanovyi. Oscillator rule in the energy spectrum of traps in KCl and NaI crystals. Ukr. Fiz. Zh. 54, 999 (2009) (in Ukrainian).

D. Curie. Luminescence in Crystals (Wiley, 1963).

I. Tale, J. Rosa. Fractional glow technique spectroscopy of traps in heavily doped AIN:O. Phys. Status Solidi A 86, 319 (1984). https://doi.org/10.1002/pssa.2210860136

H.J. Beaven. A model for thermoluminescence and related phenomena in PbSO4 : Sm. J. Phys. D 21, 181 (1988). https://doi.org/10.1088/0022-3727/21/1/025

I.N. Ogorodnikov, A.V. Porotnikov, A.V. Kruzhalov, V.Yu. Yakovlev. Recombination kinetics in nonlinear defective LiB3O5 crystals. Fiz. Tverd. Tela 40, 1817 (1998) (in Russian). https://doi.org/10.1134/1.1130664

V. Degoda, A. Gumenjuk, N. Pavlova, A. Sofiienko, S. Sulima. Oscillatory regularity of charge carrier trap energy spectra in ZnSe single crystals. Acta Phys. Polon. 129, 304 (2016). https://doi.org/10.12693/APhysPolA.129.304

A.M. Gurvich. Introduction to Physical Chemistry of Crystal Phosphors (Vysshaya Shkola, 1982) (in Russian).

A.M. Gurvich. X-Ray Luminophores and Screens (Energoatomizdat, 1976) (in Russian).

N.A. Anisimov, S.A. Baryshev, A.F. Gomenyuk, I.S. Gorban, V.Ya. Degoda. Energy spectrum of the traps in Y3Al5O12. Zh. Prikl. Spektrosk. 25, 1320 (1976) (in Russian). https://doi.org/10.1007/BF00618687

K.K. Shvarts, Z.A. Grant, T.K. Mezhs, M.M. Grube. Thermoluminescent Dosimetry (Zinatne, 1968) (in Russian).

K.V. Shalimova, Physics of Semiconductors (Energoatomizdat, 1985) (in Russian).

I.S. Gorban, A.F. Gumenyuk, V.Ya. Degoda, T.A. Kuchakova. Thermoluminescence with non-uniform accumulation of the light sum in YAG:Nd3 + crystals. Ukr. Fiz. Zh. 31, 370 (1986) (in Russian).

Published

2019-05-16

How to Cite

Degoda, V. Y., & Alizadeh, M. (2019). Parameters of Charge Carrier Traps in ZnSe. Ukrainian Journal of Physics, 64(4), 300. https://doi.org/10.15407/ujpe64.4.300

Issue

Section

Semiconductors and dielectrics