Supercritical Crossover Lines in the Cell Fluid Model

Authors

  • O.A. Dobush Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • M.P. Kozlovskii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
  • R.V. Romanik Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe70.1.35

Keywords:

cell fluid model, Morse potential, supercritical region, Widom line

Abstract

The cell fluid model with a modified Morse potential is studied. The supercritical states are considered with respect to the possibility of the construction of a separation boundary between liquid-like and gas-like behaviors. We will calculate three different lines that can be used for this purpose: the loci of the isothermal compressibility maxima, the loci of the thermal expansion coefficient maxima, and the line, where the effective chemical potential is zero, M = 0. By the symmetry of the functionals for the partition functions, the condition M = 0 in fluids is analogous to the absence of an external field in the Ising model.

References

ˇZ. Knez, E. Markoˇciˇc, M. Leitgeb, M. Primoˇziˇc, M. KnezHrnˇciˇc, M.ˇSkerget. Industrial applications of supercritical fluids: A review. Energy 77, 235 (2014).

https://doi.org/10.1016/j.energy.2014.07.044

M.E. Fisher, B. Widom. Decay of correlations in linear systems. J. Chem. Phys. 50, 3756 (1969).

https://doi.org/10.1063/1.1671624

T. Bryk, F.A. Gorelli, I. Mryglod, G. Ruocco, M. Santoro, T. Scopigno. Behavior of supercritical fluids across the "Frenkel Line". J. Chem. Phys. Lett. 8, 4995 (2017).

https://doi.org/10.1021/acs.jpclett.7b02176

X. Campi, H. Krivine, N. Sator. Percolation line of selfbound clusters in supercritical fluids. Physica A 296, 24 (2001).

https://doi.org/10.1016/S0378-4371(01)00158-3

L. Xu, P. Kumar, S.V. Buldyrev, S.-H. Chen, P.H. Poole, F. Sciortino, H.E. Stanley. Relation between the Widom line and the dynamic crossover in systems with a liquidliquid phase transition. PNAS 102, 16558 (2005).

https://doi.org/10.1073/pnas.0507870102

P. McMillan, H. Stanley. Going supercritical. Nature Phys. 6, 479 (2010).

https://doi.org/10.1038/nphys1711

S. Artemenko, P. Krijgsman, V. Mazur. The Widom line for supercritical fluids. J. Mol. Liq. 238, 122 (2017).

https://doi.org/10.1016/j.molliq.2017.03.107

J.E. Proctor. The Liquid and Supercritical Fluid States of Matter (CRC Press, 2020) [ISBN: 9780429491443].

https://doi.org/10.1201/9780429491443

M. Kozlovskii, O. Dobush. Phase behavior of a cell fluid model with modified Morse potential. Ukr. J. Phys. 65, 428 (2020).

https://doi.org/10.15407/ujpe65.5.428

O.A. Dobush, M.P. Kozlovskii, R.V. Romanik, I.V. Pylyuk. Thermodynamic response functions in a cell fluid model. Ukr. J. Phys. 69, 919 (2024).

https://doi.org/10.15407/ujpe69.12.919

O.A. Dobush, M.P. Kozlovskii, R.V. Romanik, I.V. Pylyuk. Thermodynamic response functions in a cell fluid model. arXiv preprint 2409.09786 (2024).

https://doi.org/10.15407/ujpe69.12.919

P. M. Morse. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57 (1929).

https://doi.org/10.1103/PhysRev.34.57

G.G. Simeoni, T. Bryk, F.A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, T. Scopigno. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nature Phys. 6, 503 (2010).

https://doi.org/10.1038/nphys1683

M. Kozlovskii, O. Dobush. Representation of the grand partition function of the cell model: The state equation in the mean-field approximation. J. Mol. Liq. 215, 58 (2016).

https://doi.org/10.1016/j.molliq.2015.12.018

M.P Kozlovskii, R.V. Romanik. The equation of state of a three-dimensional Ising-like system. J. Phys. Studies 13, 4007 (2009).

https://doi.org/10.30970/jps.13.4007

V.L. Kulinskii. Global isomorphism between the Lennard-Jones fluids and the Ising model. J. Chem. Phys. 133, 034121 (2010).

https://doi.org/10.1063/1.3457943

L.A. Bulavin, V.L. Kulinskii. Unified picture for the classical laws of Batschinski and the rectilinear diameter for molecular fluids. J. Phys. Chem. B 115, 6061 (2011).

https://doi.org/10.1021/jp201872f

A. Oleinikova, L. Bulavin, V. Pipich. Critical anomaly of shear viscosity in a mixture with an ionic impurity. Chem. Phys. Lett. 278, 121 (1997).

https://doi.org/10.1016/S0009-2614(97)00945-7

M.P. Kozlovskii, O.A. Dobush. Behavior of a binary asymmetric mixture of interacting particles in the supercritical region. Ukr. J. Phys. 65, 768 (2020).

https://doi.org/10.15407/ujpe65.9.768

Downloads

Published

2025-01-18

How to Cite

Dobush, O., Kozlovskii, M., & Romanik, R. (2025). Supercritical Crossover Lines in the Cell Fluid Model. Ukrainian Journal of Physics, 70(1), 35. https://doi.org/10.15407/ujpe70.1.35

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics