Constraints on the Neutrino Extension of the Standard Model and Baryon Asymmetry of the Universe

Authors

  • V. Gorkavenko Faculty of Physics, Taras Shevchenko National University of Kyiv
  • O. Khasai Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • O. Ruchayskiy Niels Bohr Institute, University of Copenhagen
  • M. Tsarenkova Faculty of Physics, Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe69.11.853

Keywords:

physics beyond the Standard Model, neutrino extension of the Standard Model, sterile neutrinos, baryon asymmetry of the Universe

Abstract

Heavy neutral leptons (HNLs) can cause a new effective interactions of particles in the Standard Model, particularly charged lepton flavor violation (cLFV) processes. The non-observation of cLFV processes, therefore, puts constraints on the parameters of the HNLs. We find the relations between the cLFV effective operators in the realistic case where active neutrino masses are non-zero and masses of the HNLs are non-degenerate. This allows us to strengthen the existing cLFV constraints. We also link the baryon asymmetry of the Universe to the same cLFV effective operators, which imposes a new restrictions on their values.

References

W.N. Cottingham, D.A. Greenwood. An Introduction to the Standard Model of Particle Physics (Cambridge University Press, 2023) [ISBN: 978-1-00-940168-5].

https://doi.org/10.1017/9781009401685

S.M. Bilenky, S.T. Petcov. Massive neutrinos and neutrino oscillations. Rev. Mod. Phys. 59, 671 (1987)

https://doi.org/10.1103/RevModPhys.59.671

[Erratum: Rev. Mod. Phys. 61, 169 (1989), Erratum: Rev. Mod. Phys. 60, 575 (1988)].

A. Strumia, F. Vissani. Neutrino masses and mixings and... arXiv:hep-ph/0606054 (2006).

P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 782, 633 (2018).

https://doi.org/10.1016/j.physletb.2018.06.019

P.J.E. Peebles. Dark Matter. Proc. Nat. Acad. Sci. 112, 2246 (2015).

https://doi.org/10.1073/pnas.1308786111

V. Lukovic, P. Cabella, N. Vittorio. Dark matter in cosmology. Int. J. Mod. Phys. A 29, 1443001 (2014).

https://doi.org/10.1142/S0217751X14430015

G. Bertone, D. Hooper. History of dark matter. Rev. Mod. Phys. 90, 045002 (2018).

https://doi.org/10.1103/RevModPhys.90.045002

G. Steigman. Observational tests of antimatter cosmologies. Ann. Rev. Astron. Astrophys. 14, 339 (1976).

https://doi.org/10.1146/annurev.aa.14.090176.002011

A. Riotto, M. Trodden. Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 49, 35 (1999).

https://doi.org/10.1146/annurev.nucl.49.1.35

L. Canetti, M. Drewes, M. Shaposhnikov. Matter and Antimatter in the Universe. New J. Phys. 14, 095012 (2012).

https://doi.org/10.1088/1367-2630/14/9/095012

T. Asaka, M. Shaposhnikov. The vMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620, 17 (2005).

https://doi.org/10.1016/j.physletb.2005.06.020

T. Asaka, S. Blanchet, M. Shaposhnikov. The nuMSM, dark matter and neutrino masses. Phys. Lett. B 631, 151 (2005).

https://doi.org/10.1016/j.physletb.2005.09.070

E.Kh. Akhmedov, V.A. Rubakov, A.Yu. Smirnov. Baryogenesis via Neutrino Oscillations. Phys. Rev. Lett. 81, 1359 (1998).

https://doi.org/10.1103/PhysRevLett.81.1359

W. Buchm¨uller, P.Di Bari, M. Pl¨umacher. Leptogenesis for pedestrians. Annals Phys. 315, 305 (2005).

https://doi.org/10.1016/j.aop.2004.02.003

A. Pilaftsis, T.E.J. Underwood. Electroweak-scale resonant leptogenesis. Phys. Rev. D 72, 113001 (2005).

https://doi.org/10.1103/PhysRevD.72.113001

S. Davidson, E. Nardi, Y. Nir. Leptogenesis. Phys. Rept. 466, 105 (2008).

https://doi.org/10.1016/j.physrep.2008.06.002

A. Pilaftsis. The little review on leptogenesis. J. Phys. Conf. Ser. 171, 012017 (2009).

https://doi.org/10.1088/1742-6596/171/1/012017

M. Shaposhnikov. Baryogenesis. J. Phys. Conf. Ser. 171, 012005 (2009).

https://doi.org/10.1088/1742-6596/171/1/012005

D. B¨odeker, W. Buchm¨uller. Baryogenesis from the weak scale to the grand unification scale. Rev. Mod. Phys. 93, 035004 (2021).

https://doi.org/10.1103/RevModPhys.93.035004

J. Klaric, M. Shaposhnikov, I. Timiryasov. Uniting lowscale leptogenesis mechanisms. Phys. Rev. Lett. 127, 111802 (2021).

https://doi.org/10.1103/PhysRevLett.127.111802

J. Klaric, M. Shaposhnikov, I. Timiryasov. Reconciling resonant leptogenesis and baryogenesis via neutrino oscillations. Phys. Rev. D 104, 055010 (2021).

https://doi.org/10.1103/PhysRevD.104.055010

M. Drewes, Y. Georis, J. Klaric. Mapping the viable parameter space for testable leptogenesis. Phys. Rev. Lett. 128, 051801 (2022).

https://doi.org/10.1103/PhysRevLett.128.051801

M. Drewes, B. Garbrecht. Leptogenesis from a GeV seesaw without mass degeneracy. JHEP 2013, 96 (2013).

https://doi.org/10.1007/JHEP03(2013)096

J.A. Casas, A. Ibarra. Oscillating neutrinos and μ → e, γ. Nucl. Phys. B 618, 171 (2001).

https://doi.org/10.1016/S0550-3213(01)00475-8

R. Coy, M. Frigerio. Effective approach to lepton observables: The seesaw case. Phys. Rev. D 99, 095040 (2019).

https://doi.org/10.1103/PhysRevD.99.095040

M. Blennow, E. Fern'andez-Mart'inez, J. Hern'andez-Garc'ia, J. L'opez-Pav'on, X. Marcano, D. Naredo-Tuero. Bounds on lepton non-unitarity and heavy neutrino mixing. JHEP 2023, 30 (2023).

https://doi.org/10.1007/JHEP08(2023)030

Published

2024-12-03

How to Cite

Gorkavenko, V., Khasai, O., Ruchayskiy, O., & Tsarenkova, M. (2024). Constraints on the Neutrino Extension of the Standard Model and Baryon Asymmetry of the Universe. Ukrainian Journal of Physics, 69(11), 853. https://doi.org/10.15407/ujpe69.11.853

Issue

Section

Theory